Metabolic characterisation of eight Escherichia coli strains including "Big Six" and acidic responses of selected strains revealed by NMR spectroscopy.

Food Microbiol

Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, PR China. Electronic address:

Published: June 2020

The metabolic diversity of Escherichia coli strains (non-pathogenic E. coli ATCC 25922, and pathogenic E. coli O157:H7, O26:H11, O45:H2, O103:H11, O111, O121:H19, and O145) was tested using nuclear magnetic resonance. Based on two representative two-dimensional H-C spectra, 38 metabolites were identified in E. coli intracellular samples. Principal component analysis indicated that metabolites including lysine, arginine, α-ketoglutaric acid, adenosine, and fumaric acid were responsible for the separation of E. coli ATCC 25922. Relatively large metabolic differences between ATCC 25922 and the pathogenic strains were recoded. The most varied pairwise group (ATCC 25922 vs. O26:H11) was further analysed. The screened metabolites and enrichment pathway tests revealed different amino acid metabolism and higher requirement for energy production in the pathogenic strains. The acidic responses of the selected strains were further tested. The in vitro and in vivo inactivation kinetics, morphological changes, and protein leakage showed higher acid tolerance of E. coli O26:H11. Metabolic analysis of the two strains under acidic stress revealed alternative metabolites and pathways in the two groups. Pathogenic O26:H11 was characterised by higher energy production and amino acid metabolism (lysine and glutamic acid). Real-time PCR tests confirmed that glutamic acid dependent decarboxylase/antiporter system was the major acid resistance mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2019.103399DOI Listing

Publication Analysis

Top Keywords

atcc 25922
16
escherichia coli
8
coli strains
8
acidic responses
8
responses selected
8
selected strains
8
coli atcc
8
25922 pathogenic
8
acid
8
pathogenic strains
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!