Serum albumins are the abounding proteins in plasma. Their most important characteristic is that they act as carriers for a type of compound, for example, different drugs. Bovine Serum Albumin (BSA) is a single-chain polypeptide with 583 amino acids. Polyamines such as putrescine can interact with negatively charged molecules. The effect of putrescine on the structure of bovine serum albumin has been surveyed utilizing the method of UV-Vis spectroscopy, Thermal stability, fluorescence spectroscopy, and molecular docking at temperature 298 K and 308 K at pH 7.4 using Tris-HCl as a buffer. The complex formation between putrescine and bovine serum albumin was discovered as alter in the absorbance at 280 nm. The amount of absorption increases with the addition of putrescine. The adding of putrescine alters the bovine serum albumin and decrements the hydrophobicity of the micro-environment of the Trp residues in the inner hydrophobic zone. The static kind of quenching process was chiefly contained within the quenching of intrinsic emission of the protein. The fluorescence quenching details () for complex bovine serum albumin-putrescine revealed one binding site for putrescine. The negative amount of Gibbs free energy change () suggested the binding operation was spontaneous.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2020.1719199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!