Colorimetric sensors have attracted wide scope of attentions due to its fascinating advantages, like handy, equipment-free and naked eye detections. In this investigation, a new and novel hydrazone based dual-responsive ratiometric/colorimetric chemosensor have been developed for highly selective and sensitive detection of Cu and F ions in dimethyl sulfoxide (DMSO) solvent. The probe showed highly selective sensing towards Cu and F ions by exhibiting a color change from pale yellow to yellowish green and pale yellow to yellowish brown respectively., in DMSO without any interference of other ions at same concentration. These experimental results have also substantiated by the NMR, HR-MS, UV-Vis spectroscopic, cyclic voltammetry, differential pulse voltammetry techniques and DFT calculations. The detection limits are found to be 5.8 μM for Cu and 0.025 μM for F ions which is far below to the values recommended by WHO. The stoichiometric ratios between NAPCBH and Cu2+/ F- ions were confirmed from the Job's plots and H NMR titration experiments which are found to be 2:1 and 1:1 respectively. The tracking ability of the DNA with NAPCBH-Cu was studied by UV-Vis titration and Cyclic voltammetry measurements. It shows efficient affinity towards DNA with NAPCBH-Cu. The probe can also quantitatively determine the Copper and fluoride ions present in environmental samples & toothpaste. The NAPCBH was promptly recovered by utilizing very low concentration of HCl, showing that was found feasible and re-usable sensor for the convenient detection of Cu and F ions. Graphical Abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-020-02488-0DOI Listing

Publication Analysis

Top Keywords

hydrazone based
8
ions
8
environmental samples
8
highly selective
8
detection ions
8
pale yellow
8
yellow yellowish
8
cyclic voltammetry
8
dna napcbh-cu
8
based dual
4

Similar Publications

Recent advances in cancer therapy have been made possible by monoclonal antibodies, domain antibodies, antibody drug conjugates, The most impact has come from controlling cell cycle checkpoints through checkpoint inhibitors. This manuscript explores the potential of a series of novel -benzyl isatin based hydrazones (5-25), which were synthesized and evaluated as anti-breast cancer agents. The synthesized hydrazones of -benzyl isatin were screened against two cell lines, the MDA-MB-231 breast cancer cell line and the MCF-10A breast epithelial cell line.

View Article and Find Full Text PDF

Noncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.

View Article and Find Full Text PDF

The synthetic availability and wide range of biological activity of hydrazides and hydrazones make them attractive subjects for investigation. In this study, we focused on synthesis of 2-methyl-5-nitro-6-phenylnicotinohydrazide-based hydrazones derived from the corresponding substituted aldehydes. The structure of the obtained compounds was studied using NMR spectroscopy and DFT calculations.

View Article and Find Full Text PDF

Azulene-1,3-bis(semicarbazone), , and azulene-1,3-bis(thiosemicarbazone), , were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds and were identified by high-resolution mass spectrometry and characterized by IR, H-NMR, C-NMR, and UV-vis spectroscopic techniques. Crystal structure determination of azulene-1,3-bis(thiosemicarbazone) shows that the thiosemicarbazone units exhibit a -closed conformation, with both arms oriented in the same direction and adopting an configuration with respect to the imine linkages.

View Article and Find Full Text PDF

This study examines the influence of ligand design on the structural, optical, and electrical properties of copper-based coordination complexes. Ligands HL and HL were synthesized via the reaction of 5-nitrosalicylaldehyde with 2-hydroxy- or 4-hydroxybenzhydrazide. HL was obtained from the reaction of carbohydrazide and salicylaldehyde, while HL was prepared by condensing 4-methoxysalicylaldehyde with thiocarbohydrazide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!