ATP13A2 (PARK9) is a late endolysosomal transporter that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome-a parkinsonism with dementia-and early-onset Parkinson's disease. ATP13A2 offers protection against genetic and environmental risk factors of Parkinson's disease, whereas loss of ATP13A2 compromises lysosomes. However, the transport function of ATP13A2 in lysosomes remains unclear. Here we establish ATP13A2 as a lysosomal polyamine exporter that shows the highest affinity for spermine among the polyamines examined. Polyamines stimulate the activity of purified ATP13A2, whereas ATP13A2 mutants that are implicated in disease are functionally impaired to a degree that correlates with the disease phenotype. ATP13A2 promotes the cellular uptake of polyamines by endocytosis and transports them into the cytosol, highlighting a role for endolysosomes in the uptake of polyamines into cells. At high concentrations polyamines induce cell toxicity, which is exacerbated by ATP13A2 loss due to lysosomal dysfunction, lysosomal rupture and cathepsin B activation. This phenotype is recapitulated in neurons and nematodes with impaired expression of ATP13A2 or its orthologues. We present defective lysosomal polyamine export as a mechanism for lysosome-dependent cell death that may be implicated in neurodegeneration, and shed light on the molecular identity of the mammalian polyamine transport system.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-1968-7DOI Listing

Publication Analysis

Top Keywords

lysosomal polyamine
12
atp13a2
10
polyamine export
8
parkinson's disease
8
uptake polyamines
8
lysosomal
5
polyamines
5
atp13a2 deficiency
4
deficiency disrupts
4
disrupts lysosomal
4

Similar Publications

Design, Synthesis, and Biological Evaluation of Naphthalimide-Polyamine Conjugate as a Potential Anti-Colorectal Cancer Agent.

Chem Biodivers

December 2024

Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, China.

Colorectal cancer is the second most common cause of cancer-related death worldwide, with a rising incidence, highlighting an urgent need for novel therapeutics. In this study, we developed several polyamine conjugates. Compound 6 (C6) was selected as the lead compound and was evaluated for anticancer activity in vitro and in vivo.

View Article and Find Full Text PDF

Unlabelled: Heterotrimeric G protein signaling pathways control growth and development in eukaryotes. In the multicellular fungus , the guanine nucleotide exchange factor RIC8 regulates heterotrimeric Gα subunits. In this study, we used RNAseq and liquid chromatography-mass spectrometry (LC-MS) to profile the transcriptomes and metabolomes of wild type, the Gα subunit mutants Δ and Δ, and Δ strains.

View Article and Find Full Text PDF

Loss-of-function mutations in the ATP13A2 (PARK9) gene are implicated in early-onset autosomal recessive Parkinson's disease (PD) and other neurodegenerative disorders. ATP13A2 encodes a lysosomal transmembrane P-type ATPase that is highly expressed in brain and specifically within the substantia nigra pars compacta (SNc). Recent studies have revealed its normal role as a lysosomal polyamine transporter, although its contribution to PD-related pathology remains unclear.

View Article and Find Full Text PDF

Although most cases of Parkinson's disease (PD) are sporadic, mutations in over 20 genes are known to cause heritable forms of the disease. Recessive loss-of-function mutations in ATP13A2, a lysosomal transmembrane P5-type ATPase and polyamine exporter, can cause early-onset familial PD. Familial ATP13A2 mutations are also linked to related neurodegenerative diseases, including Kufor-Rakeb syndrome, hereditary spastic paraplegias, neuronal ceroid lipofuscinosis, and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

ATPase cation transporting 13A2 (ATP13A2) is an endolysosomal P-type ATPase known to be a polyamine transporter, explored mostly in neurons. As endolysosomal functions are also crucial in innate immune cells, we aimed to explore the potential role of ATP13A2 in the human immunocellular compartment. We found that human plasmacytoid dendritic cells (pDCs), the professional type I IFN-producing immune cells, especially have a prominent enrichment of ATP13A2 expression in endolysosomal compartments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!