Sarcopenia represents one of the hallmarks of all chronic diseases, including cancer, and was already investigated as a prognostic marker in the pre-immunotherapy era. Sarcopenia can be evaluated using cross-sectional image analysis of CT-scans, at the level of the third lumbar vertebra (L3), to estimate the skeletal muscle index (SMI), a surrogate of skeletal muscle mass, and to evaluate the skeletal muscle density (SMD). We performed a retrospective analysis of consecutive advanced cancer patient treated with PD-1/PD-L1 checkpoint inhibitors. Baseline SMI and SMD were evaluated and optimal cut-offs for survival, according to sex and BMI (+/-25) were computed. The evaluated clinical outcomes were: objective response rate (ORR), immune-related adverse events (irAEs), progression free survival (PFS) and overall survival (OS). From April 2015 to April 2019, 100 consecutive advanced cancer patients were evaluated. 50 (50%) patients had a baseline low SMI, while 51 (51%) had a baseline low SMD according to the established cut offs. We found a significant association between SMI and ECOG-PS (p = 0.0324), while no correlations were found regarding SMD and baseline clinical factors. The median follow-up was 20.3 months. Patients with low SMI had a significantly shorter PFS (HR = 1.66 [95% CI: 1.05-2.61]; p = 0.0291) at univariate analysis, but not at the multivariate analysis. They also had a significantly shorter OS (HR = 2.19 [95% CI: 1.31-3.64]; p = 0.0026). The multivariate analysis confirmed baseline SMI as an independent predictor for OS (HR = 2.19 [1.31-3.67]; p = 0.0027). We did not find significant relationships between baseline SMD and clinical outcomes, nor between ORR, irAEs and baseline SMI (data not shown). Low SMI is associated with shortened survival in advanced cancer patients treated with PD1/PDL1 checkpoint inhibitors. However, the lack of an association between SMI and clinical response suggests that sarcopenia may be generally prognostic in this setting rather than specifically predictive of response to immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989679PMC
http://dx.doi.org/10.1038/s41598-020-58498-2DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
cancer patients
12
checkpoint inhibitors
12
advanced cancer
12
baseline smi
12
low smi
12
smi
9
muscle mass
8
muscle density
8
pd-1/pd-l1 checkpoint
8

Similar Publications

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.

View Article and Find Full Text PDF

Many of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!