We conducted a global characterization of the microbial communities of shipping ports to serve as a novel system to investigate microbial biogeography. The community structures of port microbes from marine and freshwater habitats house relatively similar phyla, despite spanning large spatial scales. As part of this project, we collected 1,218 surface water samples from 604 locations across eight countries and three continents to catalogue a total of 20 shipping ports distributed across the East and West Coast of the United States, Europe, and Asia to represent the largest study of port-associated microbial communities to date. Here, we demonstrated the utility of machine learning to leverage this robust system to characterize microbial biogeography by identifying trends in biodiversity across broad spatial scales. We found that for geographic locations sharing similar environmental conditions, subpopulations from the dominant phyla of these habitats (, , , and ) can be used to differentiate 20 geographic locations distributed globally. These results suggest that despite the overwhelming diversity within microbial communities, members of the most abundant and ubiquitous microbial groups in the system can be used to differentiate a geospatial location across global spatial scales. Our study provides insight into how microbes are dispersed spatially and robust methods whereby we can interrogate microbial biogeography. Microbes are ubiquitous throughout the world and are highly diverse. Characterizing the extent of variation in the microbial diversity across large geographic spatial scales is a challenge yet can reveal a lot about what biogeography can tell us about microbial populations and their behavior. Machine learning approaches have been used mostly to examine the human microbiome and, to some extent, microbial communities from the environment. Here, we display how supervised machine learning approaches can be useful to understand microbial biodiversity and biogeography using microbes from globally distributed shipping ports. Our findings indicate that the members of globally dominant phyla are important for differentiating locations, which reduces the reliance on rare taxa to probe geography. Further, this study displays how global biogeographic patterning of aquatic microbial communities (and other systems) can be assessed through populations of the highly abundant and ubiquitous taxa that dominant the system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992368 | PMC |
http://dx.doi.org/10.1128/mSphere.00481-19 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China. Electronic address:
Soil heavy metal pollution presents substantial risks to food security and human health. This study focused on the efficiency of plant growth-promoting fungus-Beauveria bassiana FE14 and Miscanthus floridulus on the synergistic remediation of soil Cd contamination. Results revealed that B.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Earth and Environmental Sciences, California State University, Fresno, CA, United States of America.
Rice-crab co-culture is an environmentally friendly agricultural and aquaculture technology with high economic and ecological value. In order to clarify the structure and function of soil and water microbial communities in the rice-crab symbiosis system, the standard rice-crab field with a ring groove was used as the research object. High-throughput sequencing was performed with rice field water samples to analyze the species and abundance differences of soil bacteria and fungi.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, Davis, California, United States of America.
In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
The neurotoxin methylmercury (MeHg) is produced mainly from the transformation of inorganic Hg by microorganisms carrying the gene pair. Paddy soils are known to harbor diverse microbial communities exhibiting varying abilities in methylating inorganic Hg, but their distribution and environmental drivers remain unknown at a large spatial scale. Using gene amplicon sequencing, this study examined Hg-methylating communities from major rice-producing paddy soils across a transect of ∼3600 km and an altitude of ∼1300 m in China.
View Article and Find Full Text PDFSci Adv
January 2025
Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium.
The green seaweed relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. -associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!