Hormones as adaptive control systems in juvenile fish.

Biol Open

University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway.

Published: February 2020

Growth is an important theme in biology. Physiologists often relate growth rates to hormonal control of essential processes. Ecologists often study growth as a function of gradients or combinations of environmental factors. Fewer studies have investigated the combined effects of environmental and hormonal control on growth. Here, we present an evolutionary optimization model of fish growth that combines internal regulation of growth by hormone levels with the external influence of food availability and predation risk. The model finds a dynamic hormone profile that optimizes fish growth and survival up to 30 cm, and we use the probability of reaching this milestone as a proxy for fitness. The complex web of interrelated hormones and other signalling molecules is simplified to three functions represented by growth hormone, thyroid hormone and orexin. By studying a range from poor to rich environments, we find that the level of food availability in the environment results in different evolutionarily optimal strategies of hormone levels. With more food available, higher levels of hormones are optimal, resulting in higher food intake, standard metabolism and growth. By using this fitness-based approach we also find a consequence of evolutionary optimization of survival on optimal hormone use. Where foraging is risky, the thyroid hormone can be used strategically to increase metabolic potential and the chance of escaping from predators. By comparing model results to empirical observations, many mechanisms can be recognized, for instance a change in pace-of-life due to resource availability, and reduced emphasis on reserves in more stable environments.This article has an associated First Person interview with the first author of the paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044463PMC
http://dx.doi.org/10.1242/bio.046144DOI Listing

Publication Analysis

Top Keywords

fish growth
12
growth
9
hormonal control
8
evolutionary optimization
8
growth hormone
8
hormone levels
8
food availability
8
thyroid hormone
8
hormone
7
hormones adaptive
4

Similar Publications

Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.

View Article and Find Full Text PDF

Microplastics, particles between 0.001 and 5 mm in diameter, are ubiquitous in the environment and their consumption by aquatic organisms is known to lead to a variety of adverse effects. However, studies on the effects of microplastics on prey fish have not shown consistent trends, with results varying across species and plastic type used.

View Article and Find Full Text PDF

Background: Preterm infants (PIs) are more susceptible to neurodevelopmental impairment compared with term newborns. Adequate postnatal growth has been associated with improved neurocognitive outcomes; therefore, optimization of nutrition may positively impact the neurodevelopment of PIs.

Objective: This study focused on macronutrient parenteral nutrition (PN) intake during the Neonatal Intensive Care Unit stay and their associations with neurodevelopmental outcomes in PIs in the first two years of life.

View Article and Find Full Text PDF

This research examined the efficacy of substituting commercial fish meal (CFM) with meal (PPM) in diets, with and without extract (EHE) supplementation. The study utilized six dietary treatments: a control diet (0% PPM, no EHE) and five experimental diets with varying PPM levels (0%+, 25%+, 50%+, 75%+, and 100%+), each fortified with 300 mg/kg EHE. The experiment spanned 90 days.

View Article and Find Full Text PDF

Microorganisms synthesize diverse types of exopolysaccharides (EPSs). EPSs with varying structural and physical properties can demonstrate unique health benefits, which allow for their tailored applications as functional foods such as prebiotics. Levan, a fructose-based EPS, is gaining considerable attention as an effective prebiotic to support the growth of beneficial gut bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!