Background: There are several effective therapies for osteoporosis but these agents might cause serious adverse events. Lycopene intake could prevent bone loss, however studies on its effects on bone are scarce. Our aim was to investigate the effects of lycopene on osteoblast cells as well as bone mineral density and bone turnover markers in postmenopausal women.

Methods: We investigated the effect of lycopene on the Wnt/β-catenin and ERK 1/2 pathways, RUNX2, alkaline phosphatase, RANKL and COL1A of Saos-2. We also carried out a pilot controlled clinical study to verify the feasibility of an approach for bone loss prevention through the intake of a lycopene-rich tomato sauce in 39 postmenopausal women.

Results: Lycopene 10 µM resulted in higher β-catenin and phERK1/2 protein Vs the vehicle (p = 0.04 and p = 0.006). RUNX2 and COL1A mRNA was induced by both 5 and 10 µM doses (p = 0.03; p = 0.03 and p = 0.03; p = 0.05) while RANKL mRNA was reduced (p < 0.05). A significant bone density loss was not detected in women taking the tomato sauce while the control group had bone loss (p = 0.002). Tomato sauce intake resulted in a greater bone alkaline phosphatase reduction than the control (18% vs 8.5%, p = 0.03).

Conclusions: Lycopene activates the WNT/β-catenin and ERK1/2 pathways, upregulates RUNX2, alkaline phosphatase, COL1A and downregulates RANKL Saos-2. These processes contributed to prevent bone loss in postmenopausal women.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990577PMC
http://dx.doi.org/10.1186/s12967-020-02238-7DOI Listing

Publication Analysis

Top Keywords

bone loss
8
p = 003 p = 003
8
lycopene
5
bone
5
lycopene bone
4
bone in vitro investigation
4
in vitro investigation a pilot
4
a pilot prospective clinical study
4
prospective clinical study background
4
background effective
4

Similar Publications

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Postmenopausal osteoporosis is a chronic inflammatory disease characterized by decreased bone mass and increased bone fracture risk. Estrogen deficiency during menopause plays a major role in post-menopausal osteoporosis by influencing bone, immune, and gut cell activity. In the gut, estrogen loss decreases tight junction proteins that bind epithelial cells of the intestinal barrier together.

View Article and Find Full Text PDF

Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy.

View Article and Find Full Text PDF

Background: Patients with chronic kidney disease (CKD) have serum, bone, and vascular abnormalities presenting as chronic kidney disease-mineral bone disorder (CKD-MBD) syndrome. This study sought to identify the parameters with the greatest relative impact on progression of CKD-MBD abnormalities.

Materials And Methods: This prospective study measured 237 parameters including serum markers, clinical variables, dual-energy X-ray absorptiometry (DXA) measurements, vascular calcifications, and histomorphometric results from bone samples obtained at baseline and after 2 - 3 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!