Background: Nerve growth factor (NGF) and its receptors, tropomyosin receptor kinase A (TrkA) and pan-neurotrophin receptor p75 (p75NTR), are known to play bidirectional roles between the immune and nervous system. There are only few studies with inconclusive results concerning the expression pattern and role of NGF, TrkA, and p75NTR (NGF system) under the neuroinflammatory conditions in multiple sclerosis (MS) and its mouse model, the experimental autoimmune encephalomyelitis (EAE). The aim of this study is to investigate the temporal expression in different cell types of NGF system in the central nervous system (CNS) during the EAE course.

Methods: EAE was induced in C57BL/6 mice 6-8 weeks old. CNS tissue samples were collected on specific time points: day 10 (D10), days 20-22 (acute phase), and day 50 (chronic phase), compared to controls. Real-time PCR, Western Blot, histochemistry, and immunofluorescence were performed throughout the disease course for the detection of the spatio-temporal expression of the NGF system.

Results: Our findings suggest that both NGF and its receptors, TrkA and p75NTR, are upregulated during acute and chronic phase of the EAE model in the inflammatory lesions in the spinal cord. NGF and its receptors were co-localized with NeuN cells, GAP-43 axons, GFAP cells, Arginase1 cells, and Mac3 cells. Furthermore, TrkA and p75NTR were sparsely detected on CNPase cells within the inflammatory lesion. Of high importance is our observation that despite EAE being a T-mediated disease, only NGF and p75NTR were shown to be expressed by B lymphocytes (B220 cells) and no expression on T lymphocytes was noticed.

Conclusion: Our results indicate that the components of the NGF system are subjected to differential regulation during the EAE disease course. The expression pattern of NGF, TrkA, and p75NTR is described in detail, suggesting possible functional roles in neuroprotection, neuroregeneration, and remyelination by direct and indirect effects on the components of the immune system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990493PMC
http://dx.doi.org/10.1186/s12974-020-1708-9DOI Listing

Publication Analysis

Top Keywords

trka p75ntr
20
ngf receptors
12
ngf system
12
ngf
11
spatio-temporal expression
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
nervous system
8
expression pattern
8
ngf trka
8

Similar Publications

Neural invasion is one of the most common routes of invasion in pancreatic cancer and it is responsible for the high rate of tumor recurrence after surgery and the pain generation associated with pancreatic cancer. Several molecules implicated in neural invasion are also responsible for pain onset including NGF belonging to the family of neutrophins. NGF released by cancer cells can sensitize sensory nerves which in turn results in severe pain.

View Article and Find Full Text PDF

We determined the relative expression levels of the receptors , , , and and ligands , , , and with RNAseq analysis on fetal human inner ear samples, located TrkB and TrkC proteins, and quantified with in situ hybridization on histological sections between gestational weeks (GW) 9 to 19. Spiral ganglion neurons (SGNs) and satellite glia appear to be the main source of and synthesis peaks twice at GW10 and GW15-GW17. Tonotopical gradients of revert between GW8 and GW15 and follow a maturation and innervation density gradient in SGNs.

View Article and Find Full Text PDF

Overexpression of Nogo-A changes nerve growth factor signaling dynamics in PC12 cells.

Cell Signal

December 2024

Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL, USA; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA.

The nerve growth factor (NGF) receptor TrkA is a tightly regulated receptor tyrosine kinase that activates neuronal signaling pathways promoting cell survival in addition to axonal and dendritic outgrowth. Previously, we showed that NGF and TrkA signaling is altered in neuron-like PC12 cells that overexpress Nogo-A, a protein known to influence axonal outgrowth and dendritic arborization associated with neuronal plasticity. In the present report, we provide evidence for changes in NGF-mediated receptor-level and downstream signaling that occur in cells overexpressing Nogo-A.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is an incurable and debilitating progressive, neurodegenerative disorder which is the leading cause of dementia worldwide. Neuropathologically, AD is characterized by the accumulation of Aβ amyloid plaques in the microenvironment of brain cells and neurovascular walls, chronic neuroinflammation, resulting in neuronal and synaptic loss, myelin and axonal failure, as well as significant reduction in adult hippocampal neurogenesis. The hippocampal formation is particularly vulnerable to this degenerative process, due to early dysfunction of the cholinergic circuit.

View Article and Find Full Text PDF

Role of endogenous nerve growth factor in laryngeal airway hyperreactivity and laryngeal inflammation induced by intermittent hypoxia in rats.

Respir Physiol Neurobiol

November 2024

Master program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan. Electronic address:

Obstructive sleep apnea, characterized by airway exposure to intermittent hypoxia (IH), is associated with laryngeal airway hyperreactivity (LAH) and laryngeal inflammation. The sensitization of capsaicin-sensitive superior laryngeal afferents (CSSLAs) by inflammatory mediators has been implicated in the pathogenesis of LAH. Nerve growth factor (NGF) is an inflammatory mediator that acts on tropomyosin receptor kinase A (TrkA) and the p75 neurotrophin receptor (p75) to induce lower airway hyperresponsiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!