AI Article Synopsis

  • PRMT1 is overexpressed in various cancers and is linked to chemotherapy resistance, but its mechanisms are not fully understood.
  • In ovarian cancer cells treated with cisplatin, PRMT1 was found to be regulated by DNA-PK, which phosphorylates PRMT1 and affects its activity on histone H4, leading to changes in gene expression associated with inflammation.
  • Inhibiting PRMT1 enhances the effectiveness of cisplatin by reducing cancer cell growth and promoting apoptosis, suggesting that targeting PRMT1 could help tackle chemoresistance in cancer treatments.

Article Abstract

Protein arginine methyltransferase 1 (PRMT1) is overexpressed in various human cancers and linked to poor response to chemotherapy. Various PRMT1 inhibitors are currently under development; yet, we do not fully understand the mechanisms underpinning PRMT1 involvement in tumorigenesis and chemoresistance. Using mass spectrometry-based proteomics, we identified PRMT1 as regulator of arginine methylation in ovarian cancer cells treated with cisplatin. We showed that DNA-dependent protein kinase (DNA-PK) binds to and phosphorylates PRMT1 in response to cisplatin, inducing its chromatin recruitment and redirecting its enzymatic activity toward Arg3 of histone H4 (H4R3). On chromatin, the DNA-PK/PRMT1 axis induces senescence-associated secretory phenotype through H4R3me2a deposition at pro-inflammatory gene promoters. Finally, PRMT1 inhibition reduces the clonogenic growth of cancer cells exposed to low doses of cisplatin, sensitizing them to apoptosis. While unravelling the role of PRMT1 in response to genotoxic agents, our findings indicate the possibility of targeting PRMT1 to overcome chemoresistance in cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.12.061DOI Listing

Publication Analysis

Top Keywords

prmt1
9
senescence-associated secretory
8
secretory phenotype
8
response cisplatin
8
prmt1 response
8
prmt1 recruited
4
recruited dna-pk
4
dna-pk chromatin
4
chromatin sustains
4
sustains senescence-associated
4

Similar Publications

PRMT1-Mediated Arginine Methylation Promotes Corneal Epithelial Wound Healing via Epigenetic Regulation of ANXA3.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.

View Article and Find Full Text PDF

Bromodomain-containing protein 4 (BRD4) plays a vital role in fibrosis of various organs. However, the underlying mechanism of BRD4 in renal fibrosis remains unclear. To construct in vitro and in vivo models of renal fibrosis, TCMK-1 cells were subjected to TGF-β1 treatment and mice were subjected to UUO surgery and adenine induction.

View Article and Find Full Text PDF

Yes-associated protein (YAP) activation confers resistance to chemotherapy and targeted therapy. Methionine participates in cellular processes by converting to methyl donor for the methylation of DNA, RNA and protein. However, it remains unclear whether methionine affects drug resistance by influencing YAP activity.

View Article and Find Full Text PDF
Article Synopsis
  • Atrial fibrillation (AF) is influenced by both genetics and the environment, and existing genetic studies have identified numerous genes associated with AF, but their functions and interactions remain unclear.
  • Researchers conducted a detailed analysis of 254 AF-associated genes, revealing significant biological pathways related to heart activity and connections to diseases like cancer and inflammation through pathway crosstalk.
  • They also identified 24 novel genes potentially linked to AF, with six showing differential expression in AF patients, suggesting a common genetic basis between AF and other diseases, which could aid in discovering additional AF risk factors.
View Article and Find Full Text PDF

Background: Laryngeal cancer is a common head and neck cancer, and its occurrence and development are closely related to a variety of epigenetic modifications. protein arginine methyltransferase 1 (PRMT1) is an important type I protein arginine methyltransferase, which catalyzes the monomethylation and asymmetric dimethylation of arginine and participates in the occurrence and development of a variety of cancers. Current research has found that the expression of PRMT1 is increased in laryngeal carcinoma tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!