It is recognized that the trabecular bone score (TBS) provides skeletal information, and frailty measurement is significantly associated with increased risks of adverse health outcomes. Given the suboptimal predictive power in fracture risk assessment tools, we aimed to evaluate the combination of frailty and TBS regarding predictive accuracy for risk of major osteoporotic fracture (MOF). Data from the prospective longitudinal study of CaMos (Canadian Multicentre Osteoporosis Study) were used for this study. TBS values were estimated using lumbar spine (L to L ) dual-energy X-ray absorptiometry (DXA) images; frailty was evaluated by a frailty index (FI) of deficit accumulation. Outcome was time to first incident MOF during the follow-up. We used the Harrell's C-index to compare the model predictive accuracy. The Akaike information criterion, likelihood ratio test, and net reclassification improvement (NRI) were used to compare model performances between the model combining frailty and TBS (subsequently called "FI + TBS"), FI-alone, and TBS-alone models. We included 2730 participants (mean age 69 years; 70% women) for analyses (mean follow-up 7.5 years). There were 243 (8.90%) MOFs observed during follow-up. Participants with MOF had significantly higher FI (0.24 versus 0.20) and lower TBS (1.231 versus 1.285) than those without MOF. FI and TBS were significantly related with MOF risk in the model adjusted for FRAX with bone mineral density (BMD) and other covariates: hazard ratio (HR) = 1.26 (95% confidence interval [CI] 1.11-1.43) for per-SD increase in FI; HR = 1.38 (95% CI 1.21-1.59) for per-SD decrease in TBS; and these associations showed negligible attenuation (HR = 1.24 for per-SD increase in FI, and 1.35 for per-SD decrease in TBS) when combined in the same model. Although the model FI + TBS was a better fit to the data than FI-alone and TBS-alone, only minimal and nonsignificant enhancement of discrimination and NRI were observed in FI + TBS. To conclude, frailty and TBS are significantly and independently related to MOF risk. Larger studies are warranted to determine whether combining frailty and TBS can yield improved predictive accuracy for MOF risk. © 2020 American Society for Bone and Mineral Research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbmr.3971 | DOI Listing |
Introduction: Differentiated thyroid cancer (DTC) is the most common type of endocrine malignancy, with rising incidence over recent decades. Despite a favorable prognosis, DTC management remains complex, often involving thyroidectomy followed by radioactive iodine (RAI) therapy. While RAI is crucial for patient outcomes, its efficacy varies, necessitating the identification of predictors for treatment response.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.
View Article and Find Full Text PDFHead Neck
January 2025
Service of Oral and Maxillofacial Surgery, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
Objectives: To assess the usefulness of sentinel lymph node biopsy (SLNB) in patients with early-stage oral squamous cell carcinoma (OSCC).
Materials And Methods: Seventy-five patients (mean age 62 years) diagnosed with cT1-2 N0 underwent SLNB with Tc, lymphoscintigraphy/SPECT-CT, and gamma probe detection with intraoperative histological examination of the resected sentinel lymph nodes (SLNs). Elective neck dissection was performed during the same surgical procedure of primary tumor resection when malignant deposits were detected microscopically.
Per Med
January 2025
Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet.
View Article and Find Full Text PDFMol Ecol Resour
January 2025
Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
In populations of small effective size (N), such as those in conservation programmes, companion animals or livestock species, inbreeding control is essential. Homozygosity-by-descent (HBD) segments provide relevant information in that context, as they allow accurate estimation of the inbreeding coefficient, provide locus-specific information and their length is informative about the "age" of inbreeding. Our objective was to evaluate tools for predicting HBD in future offspring based on parental genotypes, a problem equivalent to identifying segments identical-by-descent (IBD) among the four parental chromosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!