Pediatric Low Grade Gliomas (PLGGs) display heterogeneity regarding morphology, genomic drivers and clinical outcomes. The treatment modality dictates the outcome and optimizing patient management can be challenging. In this study, we profiled a targeted panel of cancer-related genes in 37 Saudi Arabian patients with pLGGs to identify genetic abnormalities that can inform prognostic and therapeutic decision-making. We detected genetic alterations (GAs) in 97% (36/37) of cases, averaging 2.51 single nucleotide variations (SNVs) and 0.91 gene fusions per patient. The KIAA1549-BRAF fusion was the most common alteration (21/37 patients) followed by AFAP1-NTRK2 (2/37) and TBLXR-PI3KCA (2/37) fusions that were observed at much lower frequencies. The most frequently mutated) genes were NOTCH1-3 (7/37), ATM (4/37), RAD51C (3/37), RNF43 (3/37), SLX4 (3/37) and NF1 (3/37). Interestingly, we identified a GOPC-ROS1 fusion in an 8-year-old patient whose tumor lacked BRAF alterations and histologically classified as low grade glioma. The patient underwent gross total resection (GTR). The patient is currently disease free. To our knowledge this is the first report of GOPC-ROS1 fusion in PLGG. Taken together, we reveal the genetic characteristics of pLGG patients can enhance diagnostics and therapeutic decisions. In addition, we identified a GOPC-ROS1 fusion that may be a biomarker for pLGG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988947PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228356PLOS

Publication Analysis

Top Keywords

gopc-ros1 fusion
12
low grade
8
identified gopc-ros1
8
patient
5
clinical management
4
management genomic
4
genomic profiling
4
profiling pediatric
4
pediatric low-grade
4
low-grade gliomas
4

Similar Publications

Glioblastoma is the most frequent and malignant primary neoplasm of the central nervous system. In a recent breakthrough study on a prospective Discovery cohort, I proposed the first all-inclusive molecular classification of glioblastoma into seven subgroups, G1-G7, based on MAPK pathway activation. New data from a WHO-grade-4 diffuse glioma prospective Validation cohort offers, in this study, an integrated demographic-molecular analysis of a 213-patient Combined cohort.

View Article and Find Full Text PDF

Aims: Mitogen-activated protein kinase (MAPK) pathway alteration is a major oncogenic driver in paediatric low-grade gliomas (LGG) and some adult gliomas, encompassing BRAF (most common) and non-BRAF alterations. The aim was to determine the frequency, molecular spectrum and clinicopathological features of MAPK-altered gliomas in paediatric and adult patients at our neuropathology site in Kuwait.

Methods: We retrospectively searched the data of molecularly sequenced gliomas between 2018 and 2023 for MAPK alterations, revised the pathology in view of the 2021 WHO classification and evaluated the clinicopathological data for possible correlations.

View Article and Find Full Text PDF

Background: Although cervical cancer is often characterized as preventable, its incidence continues to increase in low- and middle-income countries, underscoring the need to develop novel therapeutics for this disease.This study assessed the distribution of fusion genes across cancer types and used an RNA-based classification to divide cervical cancer patients with a poor prognosis into subgroups.

Material And Methods: RNA sequencing of 116 patients with cervical cancer was conducted.

View Article and Find Full Text PDF

ROS1 Alterations as a Potential Driver of Gliomas in Infant, Pediatric, and Adult Patients.

Mod Pathol

November 2023

Department of Pathology, Northwestern University Feinberg School of Medicine, Lurie Cancer Center, Chicago, Illinois. Electronic address:

Gliomas harboring oncogenic ROS1 alterations are uncommon and primarily described in infants. Our goal was to characterize the clinicopathological features and molecular signatures of the full spectrum of ROS1 fusion-positive gliomas across all age groups. Through a retrospective multi-institutional collaboration, we report a collection of unpublished ROS1 fusion gliomas along with the characterization and meta-analysis of new and published cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!