Nonlinear Optics at Excited States of Exciton Polaritons in Two-Dimensional Atomic Crystals.

Nano Lett

Nanoscale Science and Engineering Center, University of California, Berkeley, Berkeley, California 94720, United States.

Published: March 2020

Exciton polaritons (EPs) are partial-light partial-matter quasiparticles in semiconductors demonstrating striking quantum phenomena such as Bose-Einstein condensation and single-photon nonlinearity. In these phenomena, the governing process is the EP relaxation into the ground states upon excitation, where various mechanisms are extensively investigated with thermodynamic limits. However, the relaxation process becomes drastically different and could significantly advance the understanding of EP dynamics for these quantum phenomena, when excited states of EPs are involved. Here, for the first time, we observe nonlinear optical responses at the EP excited states in a monolayer tungsten disulfide (WS) microcavity, including dark excited states and dynamically metastable upper polariton bands. The nonlinear optics leads to unique emissions of ground states with prominent valley degree of freedom (DOF) via an anomalous relaxation process, which is applicable to a wide range of semiconductors from monolayer transition metal dichalcogenides (TMDs) to emerging halide perovskites. This work promises possible approaches to challenging experiments such as valley polariton condensation. Moreover, it also constructs a valley-dependent solid-state three-level system for terahertz photonics and stimulated Raman adiabatic passage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b04811DOI Listing

Publication Analysis

Top Keywords

excited states
16
nonlinear optics
8
exciton polaritons
8
quantum phenomena
8
ground states
8
relaxation process
8
states
6
excited
4
optics excited
4
states exciton
4

Similar Publications

Inaugural editorial.

J Pers Soc Psychol

January 2025

Department of Psychology, University at Buffalo, The State University of New York.

In this editorial, the author says that she is honored and excited to be entrusted with the responsibility of serving as editor of the Interpersonal Relations and Group Processes section of the Journal of Personality and Social Psychology. Her team is actively working to increase submissions, increase acceptances, and make the articles we ultimately publish more accessible, widening readership. She presents her team's submission and review guidelines.

View Article and Find Full Text PDF

Inactivation of CaV1 and CaV2 channels.

J Gen Physiol

March 2025

Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.

Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression.

View Article and Find Full Text PDF

Resolving the Ambiguity of Thermal Reversion in a Nonconjugated Monocyclic Diene-Based Photoswitch for Rechargeable Solar Thermal Batteries.

J Phys Chem A

January 2025

Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India.

We report nonconjugated monocyclic dienes (nCMDs) as unique photoswitchable molecules that hold promise for harvesting substantial solar energy and storing it for extended durations. Herein, cyclohepta-1,4-diene and its N-heterocyclic analogue have been considered as prototypical models for investigating photoswitching behavior in nCMDs. Initially, the nonradiative deactivation pathway of nCMD from the low-lying excited state to the [2 + 2]-cycloadduct has been evaluated.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) have garnered significant research attention, yet their complexity has hindered widespread adoption in daily life. Most current electroencephalography (EEG) systems rely on wet electrodes and numerous electrodes to enhance signal quality, making them impractical for everyday use. Portable and wearable devices offer a promising solution, but the limited number of electrodes in specific regions can lead to missing channels and reduced BCI performance.

View Article and Find Full Text PDF

Electron paramagnetic resonance and photoluminescence study on local structure of Gd ions in Gd-doped CaF crystals.

RSC Adv

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 201899 China.

Employing electron paramagnetic resonance (EPR) and excitation and photoluminescence (PL) spectra, changes of the local structure of Gd ions were investigated for the CaF crystals containing 0.00015, 0.17, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!