The task of moisture removal from small, delicate surfaces such as sensors and flight surfaces on micro-flyers can be challenging due to remote location and small scale. Robustness is enhanced when such surfaces, of comparable scale to deposited drops, can remove deposition without external influence. At this scale, the dynamics of a solid surface responding to a mechanical input is highly-coupled to the fluid resting above. In this study, we explore highly-coupled fluid-solid mechanics using singular liquid drops of water and a glycerin solution resting on millimetric, forced cantilevers. These wing-inspired cantilevers are sinusoidally displaced at their base across 85-115 Hz, producing surface accelerations up to 45 gravities at drop release. We observe three principal drop release modes: sliding, normal-to-cantilever ejection, and drop pinch-off. Release modes are dependent on drop and cantilever properties, and cantilever motion. Predictions of ejection modes are accomplished by application of Euler elastica theory and drop adhesion forces. Lastly, we determine damping of cantilever motion imposed by sloshing drops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9sm02253h | DOI Listing |
Sci Total Environ
January 2025
The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel; The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
Phosphorus (P) is pivotal for all organisms, yet its availability is, particularly in the marine habitat, limited. Natural, puff-shaped colonies of Trichodesmium, a genus of diazotrophic cyanobacteria abundant in the Red Sea, have been demonstrated to capture and centre dust particles. While this particle mining strategy is considered to help evade nutrient limitation, details behind the mechanism remain elusive.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China.
Aiming to enable online freshness-monitoring of meat within modified-atmosphere package, we developed a ratiometric array that was fluorescently responsive to volatile organic compounds-ammonia (NH) released by protein decaying. The array was consisted of two 3 mm × 6 mm rectangles precisely and uniformly printed with fluorescein isothiocyanate (FITC) as indicator and rhodamine B (RhB) as internal reference on the filter-paper, respectively. The fluorescence intensity of the array area was calibrated according to Green/Red ratio of the digitalized pixels extracted from images facilitated by a smartphone.
View Article and Find Full Text PDFInt J Pharm
January 2025
Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB55 00014 Helsinki, Finland. Electronic address:
Drug loaded microfiber scaffolds have potential for sublingual drug delivery due to their fast dissolution time and tunable porosity. Such microfiber scaffolds can be prepared by melt electrowriting (MEW), wherein a polymer melt is electrostatically drawn out of a syringe onto a computer controlled moving collector. The fabrication of such scaffolds via MEW has previously been shown for a polymer with a glass transition temperature (T) just above room temperature, making handling challenging.
View Article and Find Full Text PDFCurr Opin Ophthalmol
January 2025
New York Eye Surgery Center, New York City, New York, USA.
Purpose Of Review: This review highlights new Federal Drug Administration (FDA) approved glaucoma treatments to familiarize providers with immediately available options.
Recent Findings: New FDA-approved treatments include the bimatoprost implant, travoprost implant, direct selective laser trabeculoplasty (DSLT), and ocular pressure adjusting pump. The bimatoprost implant is approved for a single administration with effects lasting for about 1 year, as opposed to the nearly 3-year effect for the travoprost implant.
Objectives The primary objective of this study is to describe and evaluate the diagnostic performance of the hyperdense right hemidiaphragm sign (HRHS) as a novel radiological indicator for diffuse fatty infiltration of the liver on non-enhanced CT (NECT) scans. This includes assessing its sensitivity, specificity, positive predictive value, and negative predictive value, and comparing these metrics with other established NECT signs. Methods This cross-sectional multicenter retrospective study included all patients over 12 years of age who underwent both abdominal MRI and NECT scans of the abdomen within a period not exceeding six months at two tertiary hospitals (The Royal Hospital and Armed Forces Hospital, Muscat, Sultanate of Oman) between January 2010 and December 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!