A microgel-Pickering emulsion route to colloidal molecules with temperature-tunable interaction sites.

Soft Matter

Division of Physical Chemistry, Lund University, POB 124, SE-22100 Lund, Sweden. and NanoLund, POB 118, SE-22100 Lund, Sweden and Lund Institute of Advanced Neutron and X-ray Science (LINXS), Scheelevägen 19, SE-22370 Lund, Sweden.

Published: February 2020

A simple Pickering emulsion route has been developed for the assembly of temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) microgel particles into colloidal molecules comprising a small number of discrete microgel interaction sites on a central oil emulsion droplet. Here, the surface activity of the microgels serves to drive their assembly through adsorption to growing polydimethylsiloxane (PDMS) emulsion oil droplets of high monodispersity, prepared in situ via ammonia-catalysed hydrolysis and condensation of dimethyldiethoxysilane (DMDES). A dialysis step is employed in order to limit further growth once the target assembly size has been reached, thus yielding narrowly size-distributed, colloidal molecule-like microgel-Pickering emulsion oil droplets with well-defined microgel interaction sites. The temperature-responsiveness of the PNIPAM interaction sites will allow for the directional interactions to be tuned in a facile manner with temperature, all the way from soft repulsive to short-range attractive as the their volume phase transition temperature (VPTT) is crossed. Finally, the microgel-Pickering emulsion approach is extended to a mixture of PNIPAM and poly(N-isopropylmethacrylamide) (PNIPMAM) microgels that differ with respect to their VPTT, this in order to prepare patchy colloidal molecules where the directional interactions will be more readily resolved.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm02401hDOI Listing

Publication Analysis

Top Keywords

interaction sites
16
microgel-pickering emulsion
12
colloidal molecules
12
emulsion route
8
microgel interaction
8
emulsion oil
8
oil droplets
8
directional interactions
8
emulsion
5
colloidal
4

Similar Publications

Structure-forming foundation species facilitate consumers by providing habitat and refugia. In return, consumers can benefit foundation species by reducing top-down pressures and increasing the supply of nutrients. Consumer-mediated nutrient dynamics (CND) fuel the growth of autotrophic foundation species and generate more habitat for consumers, forming reciprocal feedbacks.

View Article and Find Full Text PDF

Mpox virus (MPXV) has to establish efficient interferon (IFN) antagonism for effective replication. MPXV-encoded IFN antagonists have not been fully elucidated. In this study, the IFN antagonism of poxin-schlafen (PoxS) fusion gene of MPXV was characterized.

View Article and Find Full Text PDF

Layered vanadium-based oxides with preintercalated metal cations are attracting extensive attention as highly promising candidates for aqueous zinc-ion batteries (AZIBs) due to the increase in structural stability originating from the pillar effect. However, the strong electrostatic interaction between the rigid metal cation pillars and zinc ions results in sluggish ionic transport, thereby limiting the high-rate performance. Herein, a layered vanadium-based oxide with protonated 1,4-diaminobutane organic cation (BDA) pillars is designed as a cathode material for AZIBs.

View Article and Find Full Text PDF

Exploring high-performance catalysts for the hydrogen evolution reaction (HER) is essential for the development of clean hydrogen energy. Single atom catalysts (SACs) have garnered significant attention due to their maximum atomic efficiency, high catalytic performance and excellent selectivity. In this work, we systematically investigated the HER activity of Ru and Fe SACs on nitrogen-doped graphene using density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Genetic basis of camouflage in an alpine plant and its long-term co-evolution with an insect herbivore.

Nat Ecol Evol

March 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.

Camouflage through colour change can involve reversible or permanent changes in response to cyclic predator or herbivore pressures. The evolution of background matching in camouflaged phenotypes partly depends on the genetics of the camouflage trait, but this has received little attention in plants. Here we clarify the genetic pathway underlying the grey-leaved morph of fumewort, Corydalis hemidicentra, of the Qinghai-Tibet Plateau that by being camouflaged escapes herbivory from caterpillars of host-specialized Parnassius butterflies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!