Glycoside hydrolases (GHs) catalyze hydrolyses of glycoconjugates in which the enzyme choreographs a series of conformational changes during the catalytic cycle. As a result, some GH families, including α-amylases (GH13), have their chemical steps concealed kinetically. To address this issue for a GH13 enzyme, we prepared seven cyclohexenyl-based carbasugars of α-d-glucopyranoside that we show are good covalent inhibitors of a GH13 yeast α-glucosidase. The linear free energy relationships between rate constants and p of the leaving group are curved upward, which is indicative of a change in mechanism, with the better leaving groups reacting by an S1 mechanism, while reaction rates for the worse leaving groups are limited by a conformational change of the Michaelis complex prior to a rapid S2 reaction with the enzymatic nucleophile. Five bicyclo[4.1.0]heptyl-based carbaglucoses were tested with this enzyme, and our results are consistent with pseudoglycosidic bond cleavage that occurs via S1 transition states that include nonproductive binding of the leaving group to the enzyme. In total, we show that the conformationally orthogonal reactions of these two carbasugars reveal mechanistic details hidden by conformational changes that the Michaelis complex of the enzyme and natural substrate undergoes which align the nucleophile for efficient catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.9b03152DOI Listing

Publication Analysis

Top Keywords

conformational changes
8
leaving group
8
leaving groups
8
michaelis complex
8
enzyme
5
conformationally controlled
4
controlled reactivity
4
reactivity carbasugars
4
carbasugars uncovers
4
uncovers choreography
4

Similar Publications

Chromatin remodeling enzymes play a crucial role in the organization of chromatin, enabling both stability and plasticity of genome regulation. These enzymes use a Snf2-type ATPase motor to move nucleosomes, but how they translocate DNA around the histone octamer is unclear. Here we use cryo-EM to visualize the continuous motion of nucleosomal DNA induced by human chromatin remodeler SNF2H, an ISWI family member.

View Article and Find Full Text PDF

Paxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions.

View Article and Find Full Text PDF

Non-Small Cell Lung Cancer (NSCLC) is a formidable global health challenge, responsible for the majority of cancer-related deaths worldwide. The Platelet-Derived Growth Factor Receptor (PDGFR) has emerged as a promising therapeutic target in NSCLC, given its crucial involvement in cell growth, proliferation, angiogenesis, and tumor progression. Among PDGFR inhibitors, avapritinib has garnered attention due to its selective activity against mutant forms of PDGFR, particularly PDGFRA D842V and KIT exon 17 D816V, linked to resistance against conventional tyrosine kinase inhibitors.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is an autoimmune and chronic disease in the brain and spinal cord. MS has inflammatory progression characterized by its hallmark inflammatory plaques. The histological and clinical characteristics of MS are shared by Experimental Autoimmune Encephalomyelitis (EAE).

View Article and Find Full Text PDF

Red blood cells (RBC), are the most unique and abundant cell types. The diameter of RBCs is 7-8 μm. They have an essential role in transporting circulatory oxygen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!