Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The prediction of regulatory single nucleotide polymorphisms (rSNPs) in proximal promoters of disease-related genes could be a useful tool for personalized medicine in both patient stratification and customized therapy. Using our previously reported method of rSNPs prediction (currently a software called SNPClinic v.1.0) as well as with PredictSNP tool, we performed in silico prediction of regulatory SNPs in the antimicrobial peptide human β-defensin 1 gene in three human cell lines from 1,000 Genomes Project (1kGP), namely A549 (epithelial cell line), HL-60 (neutrophils) and T 1 (lymphocytes). These predictions were run in a proximal pseudo-promoter comprising all common alleles on each polymorphic site according to the 1,000 Genomes Project data (1kGP: ALL). Plasmid vectors containing either the major or the minor allele of a putative rSNP rs5743417 (categorized as regulatory by SNPClinic and confirmed by PredictSNP) and a non-rSNP negative control were transfected to lung A549 human epithelial cell line. We assessed functionality of rSNPs by qPCR using the Pfaffl method. In A549 cells, minor allele of the SNP rs5743417 G→A showed a significant reduction in gene expression, diminishing DEFB1 transcription by 33% when compared with the G major allele (p-value = .03). SNP rs5743417 minor allele has high frequency in Gambians (8%, 1kGP population: GWD) and Afro-Americans (3.3%, 1kGP population: ASW). This SNP alters three transcription factors binding sites (TFBSs) comprising SREBP2 (sterols and haematopoietic pathways), CREB1 (cAMP, insulin and TNF pathways) and JUND (apoptosis, senescence and stress pathways) in the proximal promoter of DEFB1. Further in silico analysis reveals that this SNP also overlaps with GS1-24F4.2, a lincRNA gene complementary to the X Kell blood group related 5 (XKR5) mRNA. The potential clinical impact of the altered constitutive expression of DEFB1 caused by rSNP rs5743417 in DEFB1-associated diseases as tuberculosis, COPD, asthma, cystic fibrosis and cancer in African and Afro-American populations deserves further research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/iji.12475 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!