Preferential solvation of solvatochromic probe p-nitroaniline (PNA) has been studied in binary mixtures of chloroform with different hydrogen bond acceptor (HBA) solvents using the spectroscopic transition energy (E). Analyses of the solvatochromic shifts of the absorption spectra of PNA in different neat solvents as a function of the solvent polarity parameters reveal the major contribution from the solvent dipolarity/polarizability and HBA basicity in the solvation of PNA. The event of preferential solvation in the chloroform-HBA binary mixtures and the preference of one solvent above the other in the solvation shell have been attributed to the hydrogen bond donor and acceptor ability of the solvent mixtures. HBA solvents form a strong hydrogen bond with the amino group while chloroform forms a hydrogen bond with the nitro group of PNA. This specific functional group recognition increases the local concentration at specific sites resulting in location specific preferential solvation and synergistic preferential solvation. Solvents with comparable polarity have been found to show significant synergistic behavior as a result of the formation of stronger solvent-solvent hydrogen bonded S-S species. These propositions were found to be supported by theoretical solvation models, calculated HOMO-LUMO energy gaps, the effect of deuterated solvent on the extent of PS, and H NMR spectral analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp05772b | DOI Listing |
Chemphyschem
December 2024
University of Ioannina, Chemistry, 45110, Ioannina, GREECE.
The solvation structure and dynamics of the thiocyanate anion at infinite dilution in mixed N, N-Dimethylformamide (DMF)-water liquid solvents was studied using classical molecular dynamics simulation techniques. The results obtained have indicated a preferential solvation of the thiocyanate anions by the water molecules, due to strong hydrogen bonding interactions between the anion and water molecules. A first hydration shell at short intermolecular distances is formed around the SCN- anion consisting mainly by water molecules, followed by a second shell consisting by both DMF and water molecules.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Central South University, School of Metallurgy and Environment, CHINA.
The recycling of critical metals from spent lithium-ion batteries represents a significant step towards meeting the enhancing resource requirements in the new energy industry. Nevertheless, achieving effective leaching of metals from the stable metal-oxygen (MO6) structure of spent ternary cathodes and separation of metal products simultaneously still remained a huge challenge towards industrial applications. Herein, a competitive coordination strategy was proposed to design a novel deep eutectic solvent (DESs), which improved both leaching and selective metal recycling capacity even at high solid-liquid ratio (1:10).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Int J Biol Macromol
November 2024
Institute of Chemistry and Center for Computing in Engineering and Science - CCES, Universidade Estadual de Campinas (UNICAMP), Brazil. Electronic address:
The β-glucosidase enzyme is a glycosyl hydrolase that breaks down the β-1,4 linkage of cellobiose. It is inhibited by glucose at high concentrations due to competitive inhibition. However, at lower glucose concentrations, the glucose-tolerant β-glucosidase from Humicola insolens (BGHI) undergoes stimulation.
View Article and Find Full Text PDFBiochemistry
December 2024
School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, PR China.
The study focuses on the interaction between canonical uracil and its rare tautomers with Mg and MgCl in the microcosmic water environment and aims to elucidate how ions interact with nucleobase and the cation-anion correlation effect involved using density functional theory calculations. The structures of the Ura-Mg(HO) and Ura-MgCl(HO) clusters are characterized and show that the water molecules preferentially interact with Mg/MgCl, and Mg adopts a hexacoordination pattern in both Ura-Mg(HO) and Ura-MgCl(HO) clusters. When uracil interacts with Mg in (HO) environments, it tends to favor the formation of keto-enol structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!