A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biodegradable polyethylene glycol hydrogels for sustained release and enhanced stability of rhGALNS enzyme. | LitMetric

Mucopolysaccharidosis IVA (Morquio A disease) is a genetic disorder caused by deficiency of N-acetylgalactosamine-6-sulfate-sulfatase (GALNS), leading to accumulation of keratan sulfate and chondroitin-6-sulfate in lysosomes. Many patients become wheelchair-dependent as teens, and their life span is 20-30 years. Currently, enzyme replacement therapy (ERT) is the treatment of choice. Although it alleviates some symptoms, replacing GALNS enzyme poses several challenges including very fast clearance from circulation and instability at 37 °C. These constraints affect frequency and cost of enzyme infusion and ability to reach all tissues. In this study, we developed injectable and biodegradable polyethylene glycol (PEG) hydrogels, loaded with recombinant human GALNS (rhGALNS) to improve enzyme stability and bioavailability, and to sustain release. We established the enzyme's release profile via bulk release experiments and determined diffusivity using fluorescence correlation spectroscopy. We observed that PEG hydrogels preserved enzyme activity during sustained release for 7 days. In the hydrogel, rhGALNS diffused almost four times slower than in buffer. We further confirmed that the enzyme was active when released from the hydrogels, by measuring its uptake in patient fibroblasts. The developed hydrogel delivery device could overcome current limits of rhGALNS replacement and improve quality of life for Morquio A patients. Encapsulated GALNS enzyme in a polyethylene glycol hydrogel improves GALNS stability by preserving its activity, and provides sustained release for a period of at least 7 days.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-020-00714-7DOI Listing

Publication Analysis

Top Keywords

polyethylene glycol
12
sustained release
12
biodegradable polyethylene
8
enzyme
8
galns enzyme
8
peg hydrogels
8
activity sustained
8
release
6
galns
5
hydrogels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!