Background: Candida albicans and Candida glabrata are the 2 most prevalent Candida species causing bloodstream infections. Patterns of innate immune activation triggered by the 2 fungi differ considerably.

Methods: To analyze human natural killer (NK) cell activation by both species, we performed ex vivo whole-blood infection assays and confrontation assays with primary human NK cells.

Results: C. albicans was a stronger activator for isolated human NK cells than C. glabrata. In contrast, activation of blood NK cells, characterized by an upregulated surface exposure of early activation antigen CD69 and death receptor ligand TRAIL, as well as interferon-γ (IFN-γ) secretion, was more pronounced during C. glabrata infection. NK cell activation in blood is mediated by humoral mediators released by other immune cells and does not depend on direct activation by fungal cells. Cross-talk between Candida-confronted monocyte-derived dendritic cells (moDC) and NK cells resulted in the same NK activation phenotype as NK cells in human blood. Blocking experiments and cytokine substitution identified interleukin-12 as a critical mediator in regulation of primary NK cells by moDC.

Conclusions: Activation of human NK cells in response to Candida in human blood mainly occurs indirectly by mediators released from monocytic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jiaa035DOI Listing

Publication Analysis

Top Keywords

cells
11
dendritic cells
8
activation
8
cell activation
8
human cells
8
activation blood
8
mediators released
8
human blood
8
human
6
candida
5

Similar Publications

The high morbidity and mortality of colorectal cancer (CRC) is a major challenge in clinical practice. Although a series of alternative research models of CRC have been developed, appropriate orthotopic animal models that reproduce the specific clinical response as well as pathophysiological immune features of CRC are still lacking. In the current study, we constructed a CRC orthotopic xenograft model by implanting the tumor tubes at the colorectum of mice and monitored the model development using bioluminescence imaging.

View Article and Find Full Text PDF

Introduction: Allergic rhinitis is the specific inflammation against allergen by immune defense cells on the nasal mucosa, which can lead to chronic nasal symptoms such as sneezing, itching, runny nose, and nasal congestion. It is associated with high morbidity including sinusitis, asthma, otitis media, hypertrophied inferior turbinate, and nasal polyps. Despite its complications, it remains poorly recognized and tracked.

View Article and Find Full Text PDF

Background: Sepsis and acute respiratory distress syndrome (ARDS) are common inflammatory conditions in intensive care, with ARDS significantly increasing mortality in septic patients. PANoptosis, a newly discovered form of programmed cell death involving multiple cell death pathways, plays a critical role in inflammatory diseases. This study aims to elucidate the PANoptosis-related genes (PRGs) and their involvement in the progression of sepsis to ARDS.

View Article and Find Full Text PDF

Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!