Poleward species range shifts have been predicted to result from climate change, and many observations have confirmed such movement. Poleward shifts may represent a homogeneous shift in distribution, seasonal northward movement of specific populations, or colonization processes at the poleward edge of the distribution. The ecosystem of the Bering Sea has been changing along with the climate, moving from an arctic to a subarctic system. Several fish species have been observed farther north than previously reported and in increasing abundances. We examined one of these fish species, Pacific cod, in the northern Bering Sea (NBS) to assess whether they migrated from another stock in the eastern Bering Sea (EBS), Gulf of Alaska, or Aleutian Islands, or whether they represent a separate population. Genetic analyses using 3,599 single nucleotide polymorphism markers indicated that nonspawning cod collected in August 2017 in the NBS were similar to spawning stocks of cod in the EBS. This result suggests escalating northward movement of the large EBS stock during summer months. Whether the cod observed in the NBS migrate south during winter to spawn or remain in the NBS as a sink population is unknown.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976961 | PMC |
http://dx.doi.org/10.1111/eva.12874 | DOI Listing |
Sci Rep
January 2025
Graduate School/Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan.
Recent rapid sea ice reduction in the Pacific sector of the Arctic Ocean is potentially associated with inflow of Pacific-origin water via the Bering Strait. For the first time, we detected remarkable subsurface warming around the Chukchi Borderland in the Arctic Ocean over the recent two decades (i.e.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China.
Evol Appl
January 2025
National Oceanographic and Atmospheric Administration, National Marine Fisheries Service Alaska Fisheries Science Center, Auke Bay Laboratories Juneau Alaska USA.
High-latitude ocean basins are the most productive on earth, supporting high diversity and biomass of economically and socially important species. A long tradition of responsible fisheries management has sustained these species for generations, but modern threats from climate change, habitat loss, and new fishing technologies threaten their ecosystems and the human communities that depend on them. Among these species, Alaska's most charismatic megafaunal invertebrate, the red king crab, faces all three of these threats and has declined substantially in many parts of its distribution.
View Article and Find Full Text PDFJasmineira filatovae Levenstein, 1961 was described from the Bering Sea from sediments at 3812-3940 m. Later, it was reported from 6328-9735 m in the Aleutian and Japan Trenches, thus becoming the deepest sabellid ever recorded. In the present study, syntypes of J.
View Article and Find Full Text PDFEvol Appl
November 2024
Alaska Department of Fish and Game Arctic Marine Mammal Program Fairbanks USA.
Reliable estimates of population abundance and demographics are essential for managing harvested species. Ice-associated phocids, "ice seals," are a vital resource for subsistence-dependent coastal Native communities in western and northern Alaska, USA. In 2012, the Beringia distinct population segment of the bearded seal, , was listed as "threatened" under the US Endangered Species Act requiring greater scrutiny for management assessments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!