We present a novel method for taxon selection, the aim being to minimize problems arising from highly recombinant species such as . has accompanied modern-human migration out of Africa and is marked by a phylogeographic strain distribution, which has been exploited to add an extra layer of information about human migrations to that obtained from human sources. However, genome has high sequence heterogeneity combined with a very high rate of recombination, causing major allelic diversification across strains. On the other hand, recombination events that have become preserved in sub-populations are a useful source of phylogenetic information. This creates a potential problem in selecting representative strains for particular genetic or phylogeographic clusters and generally ameliorating the impact on analyses of extensive low-level recombination. To address this issue, we perform multiple population structure-based analyses on core genomes to select exemplar strains, called 'quintessents', which exhibit limited recombination. In essence, quintessent strains are representative of their specific phylogenetic clades and can be used to refine the current MLST concatenation-based population structure classification system. The use of quintessents reduces the noise due to local recombination events, while preserving recombination events that have become fixed in sub-populations. We illustrate the method with an analysis of core genome concatenations from 185 strains, which reveals a recent speciation event resulting from the recombination of strains from phylogeographic clade hpSahul, carried by Aboriginal Australians, and hpEurope, carried by some of the people who arrived in Australia over the past 200 years. The signal is much clearer when based on quintessent strains, but absent from the analysis based on MLST concatenations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976958 | PMC |
http://dx.doi.org/10.1111/eva.12864 | DOI Listing |
Mol Biol Evol
January 2025
Swiss Institute of Bioinformatics, Basel, Switzerland.
Bacterial genomes primarily diversify via gain, loss, and rearrangement of genetic material in their flexible accessory genome. Yet the dynamics of accessory genome evolution are very poorly understood, in contrast to the core genome where diversification is readily described by mutations and homologous recombination. Here, we tackle this problem for the case of very closely related genomes.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Biology and Wildlife, University of Alaska Museum, Fairbanks, Alaska, USA.
The application of high-throughput sequencing to phylogenetic analyses is allowing authors to reconstruct the true evolutionary history of species. This work can illuminate specific mechanisms underlying divergence when combined with analyses of gene flow, recombination and selection. We conducted a phylogenomic analysis of Catharus, a songbird genus with considerable potential for gene flow, variation in migratory behaviour and genomic resources.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
Transposase genes are ubiquitous in all domains of life and provide a rich reservoir for the evolution of novel protein functions. Here we report deep evolutionary links between bacterial IS110-family transposases, which catalyse RNA-guided DNA recombination using bridge RNAs, and archaeal/eukaryotic Nop5-family proteins, which promote RNA-guided RNA 2'-O-methylation using C/D-box snoRNAs. On the basis of conservation of protein sequence, domain architecture, three-dimensional structure and non-coding RNA features, alongside phylogenetic analyses, we propose that programmable RNA modification emerged through the exaptation of components derived from IS110-like transposons.
View Article and Find Full Text PDFEMBO Rep
January 2025
Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.
Genomic instability is a hallmark of tumorigenesis, yet it also plays an essential role in evolution. Large-scale population genomics studies have highlighted the importance of loss of heterozygosity (LOH) events, which have long been overlooked in the context of genetic diversity and instability. Among various types of genomic mutations, LOH events are the most common and affect a larger portion of the genome.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
The novel pathogen, Elizabethkingia anophelis, has gained attention due to its high mortality rates and drug resistance facilitated by its inherent metallo-β-lactamases (MBLs) genes. This study successfully identified and outlined the functions of the B3-Q MBLs variant, GOB-38, in a clinical sample of E. anophelis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!