The origin and evolution of vertebrate neural crest cells.

Open Biol

Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.

Published: January 2020

AI Article Synopsis

  • The neural crest is a unique group of migratory stem cells in vertebrates responsible for creating various cell types and structures, marking a significant milestone in vertebrate evolution.
  • Research in evolutionary-developmental biology is focused on understanding how neural crest cells evolved in early vertebrates, examining gene regulatory interactions during their development and migration.
  • Discoveries of neural crest-like cells in tunicates suggest that some regulatory mechanisms for neural crest development existed before vertebrates, leading to the evolution of true neural crest cells in the first vertebrates through enhanced multipotency and migration abilities.

Article Abstract

The neural crest is a vertebrate-specific migratory stem cell population that generates a remarkably diverse set of cell types and structures. Because many of the morphological, physiological and behavioural novelties of vertebrates are derived from neural crest cells, it is thought that the origin of this cell population was an important milestone in early vertebrate history. An outstanding question in the field of vertebrate evolutionary-developmental biology (evo-devo) is how this cell type evolved in ancestral vertebrates. In this review, we briefly summarize neural crest developmental genetics in vertebrates, focusing in particular on the gene regulatory interactions instructing their early formation within and migration from the dorsal neural tube. We then discuss how studies searching for homologues of neural crest cells in invertebrate chordates led to the discovery of neural crest-like cells in tunicates and the potential implications this has for tracing the pre-vertebrate origins of the neural crest population. Finally, we synthesize this information to propose a model to explain the origin of neural crest cells. We suggest that at least some of the regulatory components of early stages of neural crest development long pre-date vertebrate origins, perhaps dating back to the last common bilaterian ancestor. These components, originally directing neuroectodermal patterning and cell migration, served as a gene regulatory 'scaffold' upon which neural crest-like cells with limited migration and potency evolved in the last common ancestor of tunicates and vertebrates. Finally, the acquisition of regulatory programmes controlling multipotency and long-range, directed migration led to the transition from neural crest-like cells in invertebrate chordates to multipotent migratory neural crest in the first vertebrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014683PMC
http://dx.doi.org/10.1098/rsob.190285DOI Listing

Publication Analysis

Top Keywords

neural crest
36
crest cells
16
neural
13
neural crest-like
12
crest-like cells
12
crest
9
cell population
8
gene regulatory
8
cells invertebrate
8
invertebrate chordates
8

Similar Publications

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Purpose: A substantial proportion of children with high risk Neuroblastoma die within the first 5 years post-diagnosis despite the complex treatment applied. In the recent years, tumor environment has been revealed as key factor for cancer treatment efficacy. In this sense, non-tumorigenic Neural Crest progenitor cells from high risk patients, have been described as part of Neuroblastoma stroma, promoting tumor growth and contributing to mesenchyme formation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the differences between smooth muscle cells (SMCs) from two lineages in the proximal thoracic aorta, specifically the second heart field (SHF) and cardiac neural crest.
  • Researchers used advanced techniques like single-cell RNA sequencing and chromatin accessibility assays to analyze these cells in male mice, identifying distinct gene expressions in both lineages.
  • Findings reveal that SHF-derived SMCs have unique transcriptomic profiles that may influence their functions in thoracic aortic diseases, suggesting lineage-specific roles in vascular health.
View Article and Find Full Text PDF

Glioblastoma is an incurable brain malignancy. By the time of clinical diagnosis, these tumours exhibit a degree of genetic and cellular heterogeneity that provides few clues to the mechanisms that initiate and drive gliomagenesis. Here, to explore the early steps in gliomagenesis, we utilized conditional gene deletion and lineage tracing in tumour mouse models, coupled with serial magnetic resonance imaging, to initiate and then closely track tumour formation.

View Article and Find Full Text PDF

Tooth development is a complex process of the orderly interaction between epithelium originating from the ectoderm and mesenchyme derived from cranial neural crest cells, which not only depends on cell genes regulatory network but also involves crosstalk between cells and their surrounding environment. Even within the same type of cellular populations, obvious heterogeneity may be observed. Single-cell RNA sequencing is a novel technology aimed at sequencing the transcriptome of individual cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!