The neural crest is a vertebrate-specific migratory stem cell population that generates a remarkably diverse set of cell types and structures. Because many of the morphological, physiological and behavioural novelties of vertebrates are derived from neural crest cells, it is thought that the origin of this cell population was an important milestone in early vertebrate history. An outstanding question in the field of vertebrate evolutionary-developmental biology (evo-devo) is how this cell type evolved in ancestral vertebrates. In this review, we briefly summarize neural crest developmental genetics in vertebrates, focusing in particular on the gene regulatory interactions instructing their early formation within and migration from the dorsal neural tube. We then discuss how studies searching for homologues of neural crest cells in invertebrate chordates led to the discovery of neural crest-like cells in tunicates and the potential implications this has for tracing the pre-vertebrate origins of the neural crest population. Finally, we synthesize this information to propose a model to explain the origin of neural crest cells. We suggest that at least some of the regulatory components of early stages of neural crest development long pre-date vertebrate origins, perhaps dating back to the last common bilaterian ancestor. These components, originally directing neuroectodermal patterning and cell migration, served as a gene regulatory 'scaffold' upon which neural crest-like cells with limited migration and potency evolved in the last common ancestor of tunicates and vertebrates. Finally, the acquisition of regulatory programmes controlling multipotency and long-range, directed migration led to the transition from neural crest-like cells in invertebrate chordates to multipotent migratory neural crest in the first vertebrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014683 | PMC |
http://dx.doi.org/10.1098/rsob.190285 | DOI Listing |
PLoS One
January 2025
Ionis Pharmaceuticals, Inc., Carlsbad, CA, United States of America.
Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Departamento de Biología Celular, Universidad de Sevilla, Seville, Spain.
Purpose: A substantial proportion of children with high risk Neuroblastoma die within the first 5 years post-diagnosis despite the complex treatment applied. In the recent years, tumor environment has been revealed as key factor for cancer treatment efficacy. In this sense, non-tumorigenic Neural Crest progenitor cells from high risk patients, have been described as part of Neuroblastoma stroma, promoting tumor growth and contributing to mesenchyme formation.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Division of Cardiology, Department of Medicine, University of Washington (S.S., S.J., N.S., C.Y.L., L.L., D.A.D.).
Nature
January 2025
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
Glioblastoma is an incurable brain malignancy. By the time of clinical diagnosis, these tumours exhibit a degree of genetic and cellular heterogeneity that provides few clues to the mechanisms that initiate and drive gliomagenesis. Here, to explore the early steps in gliomagenesis, we utilized conditional gene deletion and lineage tracing in tumour mouse models, coupled with serial magnetic resonance imaging, to initiate and then closely track tumour formation.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing100081, China.
Tooth development is a complex process of the orderly interaction between epithelium originating from the ectoderm and mesenchyme derived from cranial neural crest cells, which not only depends on cell genes regulatory network but also involves crosstalk between cells and their surrounding environment. Even within the same type of cellular populations, obvious heterogeneity may be observed. Single-cell RNA sequencing is a novel technology aimed at sequencing the transcriptome of individual cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!