Regulatory requirements for sub-sea oil and gas operators mandates the frequent inspection of pipeline assets to ensure that their degradation and damage are maintained at acceptable levels. The inspection process is usually sub-contracted to surveyors who utilize sub-sea Remotely Operated Vehicles (ROVs), launched from a surface vessel and piloted over the pipeline. ROVs capture data from various sensors/instruments which are subsequently reviewed and interpreted by human operators, creating a log of event annotations; a slow, labor-intensive and costly process. The paper presents an automatic image annotation framework that identifies/classifies key events of interest in the video footage viz. exposure, burial, field joints, anodes, and free spans. The reported methodology utilizes transfer learning with a Deep Convolutional Neural Network (ResNet-50), fine-tuned on real-life, representative data from challenging sub-sea environments with low lighting conditions, sand agitation, sea-life and vegetation. The network outputs are configured to perform multi-label image classifications for critical events. The annotation performance varies between 95.1% and 99.7% in terms of accuracy and 90.4% and 99.4% in terms of F1-Score depending on event type. The performance results are on a per-frame basis and corroborate the potential of the algorithm to be the foundation for an intelligent decision support framework that automates the annotation process. The solution can execute annotations in real-time and is significantly more cost-effective than human-only approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038356PMC
http://dx.doi.org/10.3390/s20030674DOI Listing

Publication Analysis

Top Keywords

automatic annotation
4
annotation subsea
4
subsea pipelines
4
pipelines deep
4
deep learning
4
learning regulatory
4
regulatory requirements
4
requirements sub-sea
4
sub-sea oil
4
oil gas
4

Similar Publications

Flavescence dorée (FD) poses a significant threat to grapevine health, with the American grapevine leafhopper, , serving as the primary vector. FD is responsible for yield losses and high production costs due to mandatory insecticide treatments, infected plant uprooting, and replanting. Another potential FD vector is the mosaic leafhopper, , commonly found in agroecosystems.

View Article and Find Full Text PDF

Objective: To detect and classify features of stigmatizing and biased language in intensive care electronic health records (EHRs) using natural language processing techniques.

Materials And Methods: We first created a lexicon and regular expression lists from literature-driven stem words for linguistic features of stigmatizing patient labels, doubt markers, and scare quotes within EHRs. The lexicon was further extended using Word2Vec and GPT 3.

View Article and Find Full Text PDF

Purpose: Integrated MRI and linear accelerator systems (MR-Linacs) provide superior soft tissue contrast, and the capability of adapting radiotherapy plans to changes in daily anatomy. In this dataset, serial MRIs of the abdomen of patients undergoing radiotherapy were collected and the luminal gastro-intestinal tract was segmented to support an online segmentation algorithm competition. This dataset may be further utilized by radiation oncologists, medical physicists, and data scientists to further improve auto segmentation algorithms.

View Article and Find Full Text PDF

Automated White Matter Fiber Tract Segmentation for the Brainstem.

NMR Biomed

February 2025

Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.

This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas.

View Article and Find Full Text PDF

Objective: The study aims to present an active learning approach that automatically extracts clinical concepts from unstructured data and classifies them into explicit categories such as Problem, Treatment, and Test while preserving high precision and recall and demonstrating the approach through experiments using i2b2 public datasets.

Methods: Initially labeled data are acquired from a lexical-based approach in sufficient amounts to perform an active learning process. A contextual word embedding similarity approach is adopted using BERT base variant models such as ClinicalBERT, DistilBERT, and SCIBERT to automatically classify the unlabeled clinical concept into explicit categories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!