Revealing the Variation and Stability of Bacterial Communities in Tomato Rhizosphere Microbiota.

Microorganisms

Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350108, Fujian, China.

Published: January 2020

Microorganisms that colonize the plant rhizosphere can contribute to plant health, growth and productivity. Although the importance of the rhizosphere microbiome is known, we know little about the underlying mechanisms that drive microbiome assembly and composition. In this study, the variation, assembly and composition of rhizobacterial communities in 11 tomato cultivars, combined with one cultivar in seven different sources of soil and growing substrate, were systematically investigated. The tomato rhizosphere microbiota was dominated by bacteria from the phyla Proteobacteria, Bacteroidetes, and Acidobacteria, mainly comprising Rhizobiales, Xanthomonadales, Burkholderiales, Nitrosomonadales, Myxococcales, Sphingobacteriales, Cytophagales and Acidobacteria subgroups. The bacterial community in the rhizosphere microbiota of the samples in the cultivar experiment mostly overlapped with that of tomato cultivar MG, which was grown in five natural field soils, DM, JX, HQ, QS and XC. The results supported the hypothesis that tomato harbors largely conserved communities and compositions of rhizosphere microbiota that remains consistent in different cultivars of tomato and even in tomato cultivar grown in five natural field soils. However, significant differences in OTU richness ( < 0.0001) and bacterial diversity ( = 0.0014 < 0.01) were observed among the 7 different sources of soil and growing substrate. Two artificial commercial nutrient soils, HF and CF, resulted in a distinct tomato rhizosphere microbiota in terms of assembly and core community compared with that observed in natural field soils. PERMANOVA of beta diversity based on the combined data from the cultivar and soil experiments demonstrated that soil (growing substrate) and plant genotype (cultivar) had significant impacts on the rhizosphere microbial communities of tomato plants (soil, = 22.29, = 0.7399, < 0.001; cultivar, = 2.04, = 0.3223, = 0.008). Of these two factors, soil explained a larger proportion of the compositional variance in the tomato rhizosphere microbiota. The results demonstrated that the assembly process of rhizosphere bacterial communities was collectively influenced by soil, including the available bacterial sources and biochemical properties of the rhizosphere soils, and plant genotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074737PMC
http://dx.doi.org/10.3390/microorganisms8020170DOI Listing

Publication Analysis

Top Keywords

rhizosphere microbiota
24
tomato rhizosphere
16
communities tomato
12
soil growing
12
growing substrate
12
natural field
12
field soils
12
rhizosphere
11
tomato
10
bacterial communities
8

Similar Publications

Differential responses of root and leaf-associated microbiota to continuous monocultures.

Environ Microbiome

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China.

Continuous monocultures alter the composition and function of root-associated microbiota, and thus compromise crop health and productivity. In comparison, little is known about how leaf-associated microbiota respond to continuous monocultures. Here, we profiled root and leaf-associated microbiota of peanut plants under monocropping and rotation conditions.

View Article and Find Full Text PDF

Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities.

PLoS One

January 2025

Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.

Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.

View Article and Find Full Text PDF

Ecological filters shape arbuscular mycorrhizal fungal communities in the rhizosphere of secondary vegetation species in a temperate forest.

PLoS One

January 2025

Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México, Tecnológico Nacional de México, Circuito Metropolitano Sur, Tlajomulco de Zúñiga, Jalisco, Mexico.

The community assembly of arbuscular mycorrhizal fungi (AMF) in the rhizosphere results from the recruitment and selection of different AMF species with different functional traits. The aim of this study was to analyze the relationship between biotic and abiotic factors and the AMF community assembly in the rhizosphere of four secondary vegetation (SV) plant species in a temperate forest. We selected four sites at two altitudes, and we marked five individuals per plant species at each site.

View Article and Find Full Text PDF

Soil salinization adversely impacts plant and soil health. While amendment with chemicals is not sustainable, the application of bioinoculants suffers from competition with indigenous microbes. Hence, microbiome-based rhizosphere engineering, focussing on acclimatization of rhizosphere microbiome under selection pressure to facilitate plant growth, exhibits promise.

View Article and Find Full Text PDF

Rootstocks and drought stress impact the composition and functionality of grapevine rhizosphere bacterial microbiota.

Microbiol Res

January 2025

Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Gobierno de la Rioja - Universidad de La Rioja, Logroño 26007, Spain. Electronic address:

The microbiota, a component of the plant holobiont, plays an active role in the response to biotic and abiotic stresses. Nowadays, with recurrent drought and global warming, a growing challenge in viticulture is being addressed by different practices, including the use of adapted rootstocks. However, the relationships between these practices, abiotic stress and the composition and functions of the rhizosphere microbiota remain to be deciphered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!