The investigation of conformational features of regions of amyloidogenic proteins are of great interest to deepen the structural changes and consequent self-aggregation mechanisms at the basis of many neurodegenerative diseases. Here we explore the effect of β-hairpin inducing motifs on regions of prion protein covering strands S1 and S2. In detail, we unveiled the structural and functional features of two model chimeric peptides in which natural sequences are covalently linked together by two dipeptides (l-Pro-Gly and d-Pro-Gly) that are known to differently enhance β-hairpin conformations but both containing N- and the C-terminal aromatic cap motifs to further improve interactions between natural strands. Spectroscopic investigations at solution state indicate that primary assemblies of the monomers of both constructs follow different aggregativemechanisms during the self-assembly: these distinctions, evidenced by CD and ThT emission spectroscopies, reflect into great morphological differences of nanostructures and suggest that rigid β-hairpin conformations greatly limit amyloid-like fibrillogenesis. Overall data confirm the important role exerted by the β-structure of regions S1 and S2 during the aggregation process and lead to speculate to its persistence even in unfolding conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2020.103594 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!