Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 998
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3138
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anaerobic digestion (AD) reduces GHG emission and facilitates renewable energy generation. The slow rate of adoption of this technology is often attributed to economic and technical considerations. Collaboration of two or more dairy farms into a centralized AD system can improve the process economics through economies of scale. However, uncertainties related to the process parameters and the scope/scale of the collaborative implementation impede its adoption. This study presents techno-economic optimization model as a design aid to determine ideal location, capacity, and participation level (cluster size) that maximize economic return on a cooperative digester. This study employs a probabilistic approach to overcome uncertainty regarding project parameters such as manure biomethane potential (BMP), project capital, and electricity sale price. Two case studies based on dairy production regions in Wisconsin were developed to test the model and demonstrate its capabilities. Herd sizes and spatial distribution in a given region were found to be critical factors in determining the viability of digestion projects in general, and collaborative digestion systems in particular. The number of simulation runs needed to capture the probability of profitable AD facility establishment was less than 1000 for both case studies assessed. Electricity sale price and biomethane potential of feedstock utilized were found to be the most restrictive to the feasibility of AD adoption. Changing the optimization objective function, to adopting maximization, favored the formation of collaborative AD facilities for both case studies evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2020.01.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!