Xenobiotics from anthropogenic and natural origin enter animal feed and human food as regulated compounds, environmental contaminants or as part of components of the diet. After dietary exposure, a chemical is absorbed and distributed systematically to a range of organs and tissues, metabolised, and excreted. Physiologically based kinetic (PBK) models have been developed to estimate internal concentrations from external doses. In this study, a generic multi-compartment PBK model was developed for chicken. The PBK model was implemented for seven compounds (with log K range -1.37-6.2) to quantitatively link external dose and internal dose for risk assessment of chemicals. Global sensitivity analysis was performed for a hydrophilic and a lipophilic compound to identify the most sensitive parameters in the PBK model. Model predictions were compared to measured data according to dataset-specific exposure scenarios. Globally, 71% of the model predictions were within a 3-fold change of the measured data for chicken and only 7% of the PBK predictions were outside a 10-fold change. While most model input parameters still rely on in vivo experiments, in vitro data were also used as model input to predict internal concentration of the coccidiostat monensin. Future developments of generic PBK models in chicken and other species of relevance to animal health risk assessment are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2020.105488DOI Listing

Publication Analysis

Top Keywords

pbk model
12
physiologically based
8
based kinetic
8
model
8
pbk models
8
chicken pbk
8
risk assessment
8
model predictions
8
measured data
8
model input
8

Similar Publications

On occasion of the DNT5 meeting in Konstanz, Germany (April-2024), participants brainstormed on future challenges concerning a regulatory implementation of the developmental neurotoxicity (DNT) in vitro test battery (DNT-IVB). The five discussion topics below outline some of the key issues, opportunities and research directions for the next several years: (1) How to contextualize DNT hazard with information on potential maternal toxicity or other toxicity domains (non-DNT)? Several approaches on how to use cytotoxicity data from NAMs were discussed. (2) What opportunities exist for an immediate or near-future application of the DNT-IVB, e.

View Article and Find Full Text PDF

VAMP8 as a biomarker and potential therapeutic target for endothelial cell dysfunction in atherosclerosis.

Gene

January 2025

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China. Electronic address:

Background: Endothelial cell dysfunction has a critical role in the pathophysiology of atherosclerosis. This study aims to uncover pivotal genes and pathways linked to endothelial cell dysfunction in atherosclerosis, as well as to ascertain the assumed causal effects and potential mechanisms.

Methods: Datasets relevant to endothelial cell dysfunction in atherosclerosis were collected and divided into training and validation sets.

View Article and Find Full Text PDF

Predicting in vivo concentrations of dietary hop phytoestrogens by physiologically based kinetic modeling.

Food Chem Toxicol

January 2025

Department of Health Sciences and Technology, ETH Zurich, Switzerland. Electronic address:

Hop extracts containing prenylated polyphenols such as 8-prenylnaringenin (8-PN) and its precursor isoxanthohumol (iXN) are popular among women seeking natural alternatives to hormone therapy for postmenopausal symptoms. Due to structural similarities with estrogens, these compounds act as estrogen receptor agonists. Especially 8-PN, described as the most potent phytoestrogen known to date, poses a potential risk for endocrine disruption.

View Article and Find Full Text PDF

Spatially dependent tissue distribution of thyroid hormones by plasma thyroid hormone binding proteins.

Pflugers Arch

January 2025

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.

Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings.

View Article and Find Full Text PDF

Systemic bile acid homeostasis plays an important role in human health. In this study, a physiologically based kinetic (PBK) model that includes microbial bile acid deconjugation and intestinal bile acid reuptake via the apical sodium-dependent bile acid transporter (ASBT) was applied to predict the systemic plasma bile acid concentrations in human upon oral treatment with the antibiotic tobramycin. Tobramycin was previously shown to inhibit intestinal deconjugation and reuptake of bile acids and to affect bile acid homeostasis upon oral exposure of rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!