Improvement of the water-impermeable barrier function of skin is clinically important, because barrier abnormality is associated with various skin diseases, such as psoriasis or atopic dermatitis. We have shown that topical application of fatty acids, sex hormones, hexoses, polyols and polymers influences barrier homeostasis, but the effects are highly dependent on even small variations of molecular structure. Moreover, the effects appear within one hour after application and thus are likely to be non-genomic (physicochemical) phenomena. Secretion of lipids from lamellar bodies into the intercellular space between stratum granulosum and stratum corneum is a crucial step in epidermal water-impermeable barrier homeostasis, especially at the early stage of barrier recovery after damage, and phase transition of the lipid lamellar structure in the epidermis is an important part of this process. Therefore, we evaluated the effects of the above molecules on the physicochemical properties of phospholipid monolayers and liposomes as models of the lamellar body membrane and cell membrane. Molecules that influenced the barrier recovery process also altered the stability of liposomes and the air-water surface pressure of phospholipid monolayers. Studies using attenuated total reflection Fourier-transform infrared spectroscopy (ATR FT-IR), differential scanning calorimetry (DSC) and C nuclear magnetic resonance (NMR) spectrometry suggested that molecules influencing barrier recovery interact specifically with phospholipids. The idea that molecules interacting with phospholipids may influence barrier homeostasis should open up new approaches to the treatment of a variety of skin diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/exd.14075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!