A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolic Engineering of To Overproduce Squalene. | LitMetric

Metabolic Engineering of To Overproduce Squalene.

J Agric Food Chem

State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology, 130 Meilong Road , Shanghai 200237 , China.

Published: February 2020

Squalene has wide applications in the food and pharmaceutical industries. Engineering microbes to produce squalene is a promising alternative for traditional production approaches. In this study, squalene production was enhanced to 978.24 mg/L through stepwise overexpression of the enzymes that catalyze acetyl-CoA to squalene. Subsequently, to increase the activity of HMG-CoA reductase and alleviate the high dependence on NADPH, the HMG-CoA reductase (NADH-HMGR) from , highly specific for NADH, was introduced, which increased squalene production to 1086.31 mg/L. Native ethanol dehydrogenase and acetaldehyde dehydrogenase from were further overexpressed, which enhanced the capability to utilize ethanol for squalene synthesis and endowed the engineered strain with greater adaptability to high ethanol concentrations. Finally, a remarkable squalene production of 9472 mg/L was obtained from ethanol via carbon source-controlled fed-batch fermentation. This study will greatly accelerate the process of developing microbial cell factories for squalene production.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b07419DOI Listing

Publication Analysis

Top Keywords

squalene production
16
squalene
9
hmg-coa reductase
8
production
5
metabolic engineering
4
engineering overproduce
4
overproduce squalene
4
squalene squalene
4
squalene wide
4
wide applications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!