Polymer-based emitters are a promising route to the production of low-cost, scalable solution-processable luminescent materials. Here we describe a series of acrylic oxadiazole-based donor-acceptor monomers with tunable emission from blue to orange, with quantum yields as high as 96%. By introducing structural constraints that limit donor-acceptor orbital overlap, thermally activated delayed fluorescence (TADF) was observed in these materials. Polymerization by Cu(0) reversible deactivation radical polymerization (RDRP) gave high-molecular-weight copolymers ( > 20 kDa) with dispersities ranging from 1.10 to 1.45, using a room-temperature procedure with Cu wire as a catalyst. One of these materials, which had phenothiazine as donor moiety, exhibited conformationally dependent dual emission, giving a mixture of prompt fluorescence and delayed fluorescence peaks, whose relative ratios varied based on the amount of O present during measurement. We demonstrate that this material can combine prompt and delayed fluorescence to act as a single-component, all-organic, ratiometric oxygen sensor without external calibrant. Application to ratiometric oxygen sensing is demonstrated both using a polymer thin film and via incorporation of this material into water-soluble polymer dots (Pdots), with a ratiometric response to O throughout the range of partial pressures relevant to biological environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b22464 | DOI Listing |
Anal Chem
January 2025
Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
The absence of an effective imaging tool for diagnosing renal ischemia-reperfusion injury (RIRI) severely delays its treatment, and currently, no definitive clinical interventions are available. Pyroglutamate aminopeptidase-1 (PGP-1), a potential inflammatory cytokine, has shown considerable potential as a biomarker for tracing the inflammatory process in vivo. However, its exact role in the enhanced visualization of RIRI in complex biological systems has yet to be fully established.
View Article and Find Full Text PDFDose Response
January 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
Cytokinins are plant hormones that regulate cell growth and differentiation. In particular, zeatin (ZTN) delays cellular senescence of human fibroblasts and keratinocytes and exhibits anticancer activity. Chemotherapy-induced anemia is a major side effect of anticancer therapy secondary to premature senescence of red blood cells (RBCs).
View Article and Find Full Text PDFNarra J
December 2024
Research Group of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.
Zebrafish serve as a pivotal model for bioimaging and toxicity assessments; however, the toxicity of banana peel-derived carbon dots in zebrafish has not been previously reported. The aim of this study was to assess the toxicity of carbon dots derived from banana peel in zebrafish, focusing on two types prepared through hydrothermal and pyrolysis methods. Banana peels were synthesized using hydrothermal and pyrolysis techniques and then compared for characteristics, bioimaging ability, and toxicity in zebrafish as an animal model.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.
Metal-organic frameworks that feature hybrid fluorescence and phosphorescence offer unique advantages in white-emitting communities based on their multiple emission centers and high exciton utilization. However, it poses a substantial challenge to realize superior white-light emission in single-component metal-organic frameworks without encapsulating varying chromophores or integrating multiple phosphor subunits. Here, we achieve a high-performance white-light emission with photoluminescence quantum yield of 81.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhengzhou University, College of Chemistry and Molecular Engineering, CHINA.
Time-dependent afterglow colored (TDAC) behavior differs from static afterglow by involving wavelength changes, enabling low-cost, high-level encryption and anti-counterfeiting. However, the existing carbon dot (CD)-based TDAC materials lack a clear mechanistic explanation and controllable wavelength changes, significantly hindering the progress of practical applications in this field. In this study, we synthesized CDs composites with customizable tunable TDAC wavelengths across the visible region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!