The olfactory bulb (OB) is the first relay station in the olfactory system. In the OB, mitral/tufted cells (M/Ts), which are the main output neurons, play important roles in the processing and representation of odor information. Recent studies focusing on the function of M/Ts at the single-cell level in awake behaving mice have demonstrated that odor-evoked firing of single M/Ts displays transient/long-term plasticity during learning. Here, we tested whether the neural activity of M/Ts and sniffing patterns are dependent on anticipation and reward in awake behaving mice. We used an odor discrimination task combined with in vivo electrophysiological recordings in awake, head-fixed mice, and found that, while learning induced plasticity of spikes and beta oscillations during odor sampling, we also found plasticity of spikes, beta oscillation, sniffing pattern, and coherence between sniffing and theta oscillations during the periods of anticipation and/or reward. These results indicate that the activity of M/Ts plays important roles not only in odor representation but also in salience-related events such as anticipation and reward.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270464 | PMC |
http://dx.doi.org/10.1007/s12264-019-00463-9 | DOI Listing |
J Biomed Opt
January 2025
Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China.
Significance: Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China.
Parturition is a vital physiological process in the reproduction of female mammals, regulated by neurohumoral mechanisms coordinated by the central nervous system. The uterus is essential for this process; however, the neural pathways connecting the brain to the uterus remain poorly understood. In this study, we combined the pseudorabies virus (PRV) tracing tool with c-Fos immunofluorescence staining to identify brain regions that may regulate uterine muscle activity during parturition.
View Article and Find Full Text PDFJ Neurosci Methods
January 2025
Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, Carl-von-Ossietzky University Oldenburg, Germany. Electronic address:
Background: Spreading depolarization (SD) is an electrophysiological phenomenon of massive neuronal depolarization that occurs in a multitude of brain injuries. Clinical studies and experimental data have linked the occurrence of SDs with secondary brain damage. However, there is a translational gap because of methodological limitations between clinical and experimental approaches focusing on short-term effects.
View Article and Find Full Text PDFTrends Neurosci
January 2025
Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:
Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function.
View Article and Find Full Text PDFCurr Protoc
January 2025
Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland.
In vivo calcium imaging in freely moving rats using miniscopes provides valuable information about the neural mechanisms of behavior in real time. A gradient index (GRIN) lens can be implanted in deep brain structures to relay activity from single neurons. While such procedures have been successful in mice, few reports provide detailed procedures for successful surgery and long-term imaging in rats, which are better suited for studying complex human behaviors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!