This review summarizes state of the art synthesis and applications of carbon dots (CDs) with pH-responsive fluorescence. Following an introduction, the first section covers methods for the preparation of pH-responsive CDs, with subsections on general methods for preparing CDs (by hydrothermal, solvothermal, electrochemical, microwave, laser ablation, pyrolysis or chemical oxidation polymerization methods), and on precursors for synthesis. This is followed by a section on the mechanisms of pH-responsivity (by creating new functional groups, change of energy levels, protonation and deprotonation, aggregation, or by introduction shells). Several Tables are presented that give an overview of the wealth of methods and materials. A final section covers applications of carbon dots (CDs) with pH-responsive fluorescence for sensing, drug delivery, and imaging. The conclusion summarizes the current status, addresses challenges, and gives an outlook on potential future trends. Graphical abstract The synthesis and biological applications of carbon dots(CDs) with pH-responsive fluorescence are summarized. Precursors and methods for preparation of pH-responsive CDs, mechanisms of pH-responsivity, and biological applications of CDs with pH-responsive fluorescence for sensing, drug delivery, and imaging are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-019-4091-4DOI Listing

Publication Analysis

Top Keywords

ph-responsive fluorescence
20
carbon dots
12
biological applications
12
applications carbon
12
cds ph-responsive
12
dots cds
8
methods preparation
8
preparation ph-responsive
8
ph-responsive cds
8
mechanisms ph-responsivity
8

Similar Publications

This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies.

View Article and Find Full Text PDF

The ability to label synthetic oligonucleotides with fluorescent probes has greatly expanded their nanotechnological applications. To continue this expansion, it is essential to develop approachable, modular, and tunable fluorescent platforms. In this study, we present the synthesis and incorporation of an amino-formyl-thieno[3,2-]thiophene (AFTh) handle at the 5'-position of DNA oligonucleotides.

View Article and Find Full Text PDF

Intrinsic dual-emitting Si dots for high-precision and broad-range pH detection.

Anal Chim Acta

February 2025

Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic address:

Background: High-precision and broad-range pH detection is critical for health status assessment, such as signal transduction, enzyme activity, endocytosis, and cell proliferation and apoptosis. Although pH-responsive ratiometric fluorescent probes offer an effective pH monitoring strategy, their preparation often requires multi-step modification and decreases fluorescence efficiency and stability. Herein, we developed a simple method to prepare fluorescent Si dots with dual emission centers for high-precision and broad-range pH monitoring, and the detection of urease based on pH-responsive Si dots and pH monitoring in living cell was further explored.

View Article and Find Full Text PDF

Oxazolidine is a new category of stimuli-chromic compounds that has unique intelligent behaviors such as halochromism, hydrochromism, solvatochromism, and ionochromism, all of which have potential applications for designing and constructing chemosensors by using functionalized-polymer nanocarriers. Here, the poly(MMA--HEMA) based nanoparticles were synthesized by emulsion copolymerizing methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different copolymer compositions. The poly(MMA--HEMA) based nanoparticles were modified physically with tertiary amine-functionalized oxazolidine (as an intelligent pH-responsive organic dye) to prepare halochromic latex nanoparticles.

View Article and Find Full Text PDF

Smart textiles that integrate multiple environmental sensing capabilities are an emerging frontier in wearable technology. In this study, we developed dual pH- and temperature-responsive textiles by combining engineered bacterial systems with bacterially derived proteins. For temperature sensing, we characterized the properties of a heat sensitive promoter, P, in () using enhanced green fluorescent protein as a reporter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!