A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CRISPR/Cas9-mediated mutagenesis to validate the synergy between PARP1 inhibition and chemotherapy in -mutated breast cancer cells. | LitMetric

For patients carrying mutations, at least one-third develop triple negative breast cancer (TNBC). Not only is TNBC difficult to treat due to the lack of molecular target receptors, but mutations (BRCA1m) also result in chemotherapeutic resistance, making disease recurrence more likely. Although BRCA1m are highly heterogeneous and therefore difficult to target, gene's synthetic lethal pair, , is conserved in BRCA1m cancer cells. Therefore, we hypothesize that targeting might be a fruitful direction to sensitize BRCA1m cancer cells to chemotherapy. We used CRISPR/Cas9 technology to generate deficiency in two TNBC cell lines, MDA-MB-231 ( wild-type) and MDA-MB-436 (BRCA1m). We explored whether this disruption (PARP1m) could significantly lower the chemotherapeutic dose necessary to achieve therapeutic efficacy in both a 2D and 3D tumor-on-a-chip model. With both BRCA1m and PARP1m, the TNBC cells were more sensitive to three representative chemotherapeutic breast cancer drugs, doxorubicin, gemcitabine and docetaxel, compared with the wild-type counterpart in the 2D culture environment. However, PARP1m did not result in this synergy in the 3D tumor-on-a-chip model, suggesting that drug dosing in the tumor microenvironment may influence the synergy. Taken together, our results highlight a discrepancy in the efficacy of the combination of PARP1 inhibition and chemotherapy for TNBC treatment, which should be clarified to justify further clinical testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971465PMC
http://dx.doi.org/10.1002/btm2.10152DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
cancer cells
12
parp1 inhibition
8
inhibition chemotherapy
8
brca1m cancer
8
tumor-on-a-chip model
8
brca1m
6
cancer
5
tnbc
5
crispr/cas9-mediated mutagenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!