Breast Cancer Recurrence Risk Assessment: Is Non-Invasive Monitoring an Option?

Biomed Hub

Institute of Immunology, Faculty of Health Science, Department of Medicine and School of Life Sciences (ZBAF), University of Witten-Herdecke, Witten, Germany.

Published: November 2018

Background: Metastatic breast cancer (MBC) represents a life-threatening disease with a median survival time of 18-24 months that often can only be treated palliatively. The majority of women suffering from MBC are those who had been previously diagnosed with locally advanced disease and subsequently experienced cancer recurrence in the form of metastasis. However, according to guidelines, no systemic follow-up for monitoring purposes is recommended for these women. The purpose of this article is to review current methods of recurrent risk assessment as well as non-invasive monitoring options for women at risk for distant disease relapse and metastasis formation.

Methods: We used PubMed and national guidelines, such as the National Comprehensive Cancer Network (NCCN), to find recently published studies on breast cancer recurrence risk assessment and systemic monitoring of breast cancer patients through non-invasive means.

Results: The options for recurrence risk assessment of locally invasive breast cancer has improved due to diverse genetic tests, such as Oncotype DX, MammaPrint, the PAM50 (now known as the "Prosigna Test") assay, EndoPredict (EP), and the Breast Cancer Index (BCI), which evaluate a women's risk of relapse according to certain cancer-gene expression patterns. Different promising non-invasive urinary protein-based biomarkers with metastasis surveillance potential that have been identified are MMP-2, MMP-9, NGAL, and ADAM12. In particular, ααCTX, ββCTX, and NTX could help to monitor bone metastasis.

Conclusion: In times of improved recurrence risk assessment of women with breast cancer, non-invasive biomarkers are urgently needed as potential monitoring options for women who have an increased risk of recurrence. Urine as a bioliquid of choice provides several advantages - it is non-invasive, can be obtained easily and frequently, and is economical. Promising biomarkers that could help to follow up women with increased recurrence risk have been identified. In order for them to be implemented in clinical usage and national guideline recommendations, further validation in larger independent cohorts will be needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945973PMC
http://dx.doi.org/10.1159/000492929DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
recurrence risk
20
risk assessment
20
cancer recurrence
12
risk
9
non-invasive monitoring
8
cancer
8
monitoring options
8
options women
8
women increased
8

Similar Publications

Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer.

Photochem Photobiol Sci

January 2025

Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.

Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects.

View Article and Find Full Text PDF

Classifying the molecular subtype of breast cancer using vision transformer and convolutional neural network features.

Breast Cancer Res Treat

January 2025

Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimamichou, Kita-Ku, Niigata, Japan.

Purpose: Identification of the molecular subtypes in breast cancer allows to optimize treatment strategies, but usually requires invasive needle biopsy. Recently, non-invasive imaging has emerged as promising means to classify them. Magnetic resonance imaging is often used for this purpose because it is three-dimensional and highly informative.

View Article and Find Full Text PDF

Purpose: Interstitial lung disease (ILD) is a well described and potentially fatal complication of trastuzumab-deruxtecan (T-DXd). It is currently unknown if specific monitoring is beneficial in the early detection of ILD in these patients. We describe the efficacy and feasibility of a novel ILD monitoring protocol in breast cancer patients treated with T-DXd at our institution.

View Article and Find Full Text PDF

Antibacterial screening of endophytic fungi from Salacia intermedia identified Diaporthe longicolla as a potent strain exhibiting good activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, with an MIC of 39.1 µg/mL. Scale-up fermentation and chromatographic purification of this strain yielded three known compounds, which were cytochalasin J (1), cytochalasin H (2), and dicerandrol C (3), as identified by liquid chromatography - high mass resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

This research demonstrates the design and development of a novel dual-targeting, pH-sensitive liposomal (pSL) formulation of 5-Fluorouracil (5-FU), , (5-FU-iRGD-FA-pSL) to manage breast cancer (BC). The motivation to explore this formulation is to overcome the challenges of systemic toxicity and non-specific targeting of 5-FU, a conventional chemotherapeutic agent. The proposed formulation also combines folic acid (FA) and iRGD peptides as targeting ligands to enhance tumor cell specificity and penetration, while the pH-sensitive liposomes ensure the controlled drug release in the acidic tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!