Computational evolution of an RNA-binding protein towards enhanced oxidized-RNA binding.

Comput Struct Biotechnol J

Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU Room 200, College Station, TX 77843, United States.

Published: December 2019

The oxidation of RNA has been implicated in the development of many diseases. Among the four ribonucleotides, guanosine is the most susceptible to oxidation, resulting in the formation of 8-oxo-7,8-dihydroguanosine (8-oxoG). Despite the limited knowledge about how cells regulate the detrimental effects of oxidized RNA, cellular factors involved in its regulation have begun to be identified. One of these factors is polynucleotide phosphorylase (PNPase), a multifunctional enzyme implicated in RNA turnover. In the present study, we have examined the interaction of PNPase with 8-oxoG in atomic detail to provide insights into the mechanism of 8-oxoG discrimination. We hypothesized that PNPase subunits cooperate to form a binding site using the dynamic SFF loop within the central channel of the PNPase homotrimer. We evolved this site using a novel approach that initially screened mutants from a library of beneficial mutations and assessed their interactions using multi-nanosecond Molecular Dynamics simulations. We found that evolving this single site resulted in a fold change increase in 8-oxoG affinity between 1.2 and 1.5 and/or selectivity between 1.5 and 1.9. In addition to the improvement in 8-oxoG binding, complementation of K12 Δ with plasmids expressing mutant PNPases caused increased cell tolerance to HO. This observation provides a clear link between molecular discrimination of RNA oxidation and cell survival. Moreover, this study provides a framework for the manipulation of modified-RNA protein readers, which has potential application in synthetic biology and epitranscriptomics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965710PMC
http://dx.doi.org/10.1016/j.csbj.2019.12.003DOI Listing

Publication Analysis

Top Keywords

8-oxog
5
computational evolution
4
evolution rna-binding
4
rna-binding protein
4
protein enhanced
4
enhanced oxidized-rna
4
oxidized-rna binding
4
binding oxidation
4
rna
4
oxidation rna
4

Similar Publications

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.

View Article and Find Full Text PDF

Iron regulatory protein 1 deficient mice exhibit hypospermatogenesis.

J Biol Chem

December 2024

Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany; Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany.

Imbalances in testicular iron levels are linked to compromised sperm production and male infertility. Iron regulatory proteins (IRP) 1 and 2 play crucial roles in cellular iron regulation. We investigated the role of IRP1 on spermatogenesis using Irp1-deficient mice (Irp1).

View Article and Find Full Text PDF

Cell-Specific Control of Mammalian Gene Expression Using DNA Repair Inducible Ribozyme Switches.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha, 410082, China.

The ability to control gene expression is vital for elucidating gene functions and developing next-generation therapeutics. Current techniques are challenged by the lack of cell-specific control designs or immunogenicity risk from foreign proteins. We develop a DNA repair inducible ribozyme switch that enables cell-specific control of gene expression in cells and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • OGG1 (8-oxoguanine DNA glycosylase-1) is essential for DNA repair, particularly in removing damaged DNA caused by oxidation, and its deficiency in mice leads to increased obesity and metabolic issues from a high-fat diet (HFD).
  • The study found that OGG1-deficient mice had greater obesity and impaired insulin action compared to wild-type mice, underscoring OGG1's significant role in metabolism and insulin sensitivity.
  • Targeting OGG1 to mitochondria showed protective effects against HFD-induced obesity and insulin resistance, highlighting potential mechanisms that could inform future therapeutic strategies.
View Article and Find Full Text PDF

Bulk increases in nucleobase oxidation, most commonly manifesting as the guanine (G) nucleobase modification 8-oxo-7,8-dihydroguanine (8-oxoG), have been linked to several disease pathologies. Elucidating the effects of RNA oxidation on cellular homoeostasis is limited by a lack of effective tools for detecting specific regions modified with 8-oxoG. Building on a previously published method for studying 8-oxoG in DNA, we developed ChLoRox-Seq, which works by covalently functionalizing 8-oxoG sites in RNA with biotin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!