Background: As a renewable carbon source, biomass energy not only helps in resolving the management problems of lignocellulosic wastes, but also helps to alleviate the global climate change by controlling environmental pollution raised by their generation on a large scale. However, the bottleneck problem of extensive production of biofuels lies in the filamentous crystal structure of cellulose and the embedded connection with lignin in biomass that leads to poor accessibility, weak degradation and digestion by microorganisms. Some pretreatment methods have shown significant improvement of methane yield and production rate, but the promotion mechanism has not been thoroughly studied. Revealing the temporal and spatial effects of pretreatment on lignocellulose will greatly help deepen our understanding of the optimization mechanism of pretreatment, and promote efficient utilization of lignocellulosic biomass. Here, we propose an approach for qualitative, quantitative, and location analysis of subcellular lignocellulosic changes induced by alkali treatment based on label-free Raman microspectroscopy combined with chemometrics.
Results: Firstly, the variations of rice straw induced by alkali treatment were characterized by the Raman spectra, and the Raman fingerprint characteristics for classification of rice straw were captured. Then, a label-free Raman chemical imaging strategy was executed to obtain subcellular distribution of the lignocellulose, in the strategy a serious interference of plant tissues' fluorescence background was effectively removed. Finally, the effects of alkali pretreatment on the subcellular spatial distribution of lignocellulose in different types of cells were discovered.
Conclusions: The results demonstrated the mechanism of alkali treatment that promotes methane production in rice straw through anaerobic digestion by means of a systemic study of the evidence from the macroscopic measurement and Raman microscopic quantitative and localization two-angle views. Raman chemical imaging combined with chemometrics could nondestructively realize qualitative, quantitative, and location analysis of the lignocellulose of rice straw at a subcellular level in a label-free way, which was beneficial to optimize pretreatment for the improvement of biomass conversion efficiency and promote extensive utilization of biofuel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966900 | PMC |
http://dx.doi.org/10.1186/s13068-020-1648-8 | DOI Listing |
Heliyon
January 2025
Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
Reducing the harmful chemical use along with obtaining potential yield in field is a worth exploring practice in rice cultivation. To mitigate the prevailing yield gap, the current study was designed to evaluate the effect of chitosan in improving growth, yield contributing characters and yield of rice. The experiment comprised eight different treatments control (no fertilizer and Chitosan) (T), conventional method (with fertilizers) (T), conventional method with foliar spray of 100 ppm chitosan solution (T), conventional method with foliar spray of 300 ppm chitosan solution (T), conventional method with foliar spray of 500 ppm chitosan solution (T), only foliar spray of 100 ppm chitosan solution (T), only foliar spray of 300 ppm chitosan solution (T), and only foliar spray of 500 ppm chitosan solution (T).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Plastic film mulching is a potentially water-saving cultivation strategy, while straw return coupled with nitrogen (N) fertilization can ensure sustainable soil productivity and increased soil organic matter (SOM) sequestration. Nevertheless, a comprehensive understanding of how soil quality and agronomic productivity respond to long-term N fertilization and straw incorporation practices under non-flooded conditions with plastic film mulching remains elusive. Herein, a 15-year field experiment with straw incorporation practices (straw return and no straw return) under various N fertilization rates (N0, N1, N2, N3, and N4: 0, 45, 90, 135, and 180 kg N ha, respectively) was conducted to explore their long-term effects.
View Article and Find Full Text PDFFront Microbiol
January 2025
Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand.
Maximizing saccharification efficiency of lignocellulose and minimizing the production costs associated with enzyme requirements are crucial for sustainable biofuel production. This study presents a novel semi-fed-batch saccharification method that uses a co-culture of and strain A9 to efficiently break down high solid-loading lignocellulosic biomass without the need for any external enzymes. This method optimizes saccharification efficiency and enhances glucose production from alkaline-treated rice straw, a representative lignocellulosic biomass.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:
Communities of arbuscular mycorrhizal fungi (AMF) in soil are influenced by various agricultural managements, which in turn affects crop productivity. However, the impacts of straw returning on AMF communities are sparsely understood. Here, a 7-year field experiment including three sets of straw managements - returning methods (CK: no-tillage without straw; RT-SR: rotary tillage with straw; DB-SR: ditch-buried tillage with straw), burial amount, burial depth - were applied to evaluate the influences of straw managements on AMF composition.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.
Introduction: In ruminants, a symbiotic rumen microbiota is responsible for supporting the digestion of dietary fiber and contributes to health traits closely associated with meat and milk quality. A holistic view of the physicochemical profiles of mixed rumen microbiota (MRM) is not well-illustrated.
Methods: The experiment was performed with a 3 × 4 factorial arrangement of the specific surface area (SSA: 3.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!