Ag/γ-AlO is widely used for catalyzing various reactions, and its performance depends on the valence state, morphology and dispersion of Ag species. However, detailed anchoring mechanism of Ag species on γ-AlO remains largely unknown. Herein, we reveal that the terminal hydroxyls on γ-AlO are responsible for anchoring Ag species. The abundant terminal hydroxyls existed on nanosized γ-AlO can lead to single-atom silver dispersion, thereby resulting in markedly enhanced performance than the Ag cluster on microsized γ-AlO. Density-functional-theory calculations confirm that Ag atom is mainly anchored by the terminal hydroxyls on (100) surface, forming a staple-like local structure with each Ag atom bonded with two or three terminal hydroxyls. Our finding resolves the puzzle on why the single-atom silver dispersion can be spontaneously achieved only on nanosized γ-AlO, but not on microsized γ-AlO. The obtained insight into the Ag species dispersion will benefit future design of more efficient supported Ag catalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985108 | PMC |
http://dx.doi.org/10.1038/s41467-019-13937-1 | DOI Listing |
J Biol Chem
January 2025
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States. Electronic address:
Cytochrome P450 (P450) 4A11 is a human P450 family 4 ω-oxidase that selectively catalyzes the hydroxylation of the terminal methyl group of fatty acids. Cytosolic lipids are the substrates for the enzyme but are considered to be primarily bound in cells by liver fatty acid binding protein (FABP1). Lipid binding to recombinant FABP1 with a fluorophore displacement assay showed substantial preference of FABP1 for ≥16-carbon fatty acids (K < 70 nM).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia.
The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States.
J Org Chem
January 2025
National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China.
This study introduces a novel methodology for the direct construction of tetrasubstituted centers, utilizing secondary C(sp)-H and C(sp)-H substrates, specifically indolin-2-ones and indoles, through an innovative oxidative cross-coupling reaction. Facilitated by a straightforward copper salt catalyst, this reaction proceeds efficiently at a mild temperature of 40 °C under operationally streamlined conditions. Emphasizing sustainability, this method is notably enhanced by employing air (molecular oxygen) as an eco-friendly oxidant.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States.
Highly energetic boron (B) particles embedded in hydroxyl-terminated polybutadiene (HTPB) thermosetting polymers represent stable solid-state fuel. Laser-heating of levitated B/HTPB and pure HTPB particles in a controlled atmosphere revealed spontaneous ignition of B/HTPB in air, allowing for examination of the exclusive roles of boron. These ignition events are probed via simultaneous spectroscopic diagnostics: Raman and infrared spectroscopy, temporally resolved high-speed optical and infrared cameras, and ultraviolet-visible (UV-vis) spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!