Micromechanical imaging of dentin with Brillouin microscopy.

Acta Biomater

Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France. Electronic address:

Published: March 2020

The structure of teeth can be altered by diet, age or diseases such as caries and sclerosis. It is very important to characterize their mechanical properties to predict and understand tooth decay, design restorative dental procedures, and investigate their tribological behavior. However, existing imaging techniques are not well suited to investigating the micromechanics of teeth, in particular at tissue interfaces. Here, we describe a microscope based on Brillouin light scattering (BLS) developed to probe the spectrum of the light scattered from tooth tissues, from which the mechanical properties (sound velocity, viscosity) can be inferred with a priori knowledge of the refractive index. BLS is an inelastic process that uses the scattering of light by acoustic waves in the GHz range. Our microscope thus reveals the mechanical properties at the micrometer scale without contact with the sample. BLS signals show significant differences between sound tissues and pathological lesions, and can be used to precisely delineate carious dentin. We also show maps of the sagittal and transversal planes of sound tubular dentin that reveal its anisotropic microstructure at 1 µm resolution. Our observations indicate that the collagen-based matrix of dentine is the main load-bearing structure, which can be considered as a fiber-reinforced composite. In the vicinity of polymeric tooth-filling materials, we observed the infiltration of the adhesive complex into the opened tubules of sound dentine. The ability to probe the quality of this interfacial layer could lead to innovative designs of biomaterials used for dental restorations in contemporary adhesive dentistry, with possible direct repercussions on decision-making during clinical work. STATEMENT OF SIGNIFICANCE: Mechanical properties of teeth can be altered by diet, age or diseases. Yet existing imaging modalities cannot reveal the micromechanics of the tooth. Here we developed a new type of microscope that uses the scattering of a laser light by naturally-occurring acoustic waves to probe mechanical changes in tooth tissues at a sub-micrometer scale without contact to the sample. We observe significant mechanical differences between healthy tissues and pathological lesions. The contrast in mechanical properties also reveals the microstructure of the polymer-dentin interfaces. We believe that this new development of laser spectroscopy is very important because it should lead to innovative designs of biomaterials used for dental restoration, and allow delineating precisely destructed dentin for minimally-invasive strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2020.01.035DOI Listing

Publication Analysis

Top Keywords

mechanical properties
20
teeth altered
8
altered diet
8
diet age
8
age diseases
8
existing imaging
8
tooth tissues
8
acoustic waves
8
scale contact
8
contact sample
8

Similar Publications

Chronic pain and restricted mobility, hallmark features of rheumatic diseases, substantially affect patients' quality of life, often resulting in physical disability and emotional distress. Given the long-term nature of these conditions, there is a growing interest in complementary therapeutic approaches, emphasizing the need to explore non-pharmacological treatments. Hydrotherapy, balneotherapy, and mud therapy have emerged as effective interventions to alleviate pain, reduce inflammation, improve joint mobility, and enhance overall physical and mental well-being.

View Article and Find Full Text PDF

The CRTS (China Railway Track System) II slab ballastless track is widely utilized in high-speed railway construction owing to its excellent structural integrity. However, its interfacial performance deteriorates under high-temperature conditions, leading to significant damage in structural details. Furthermore, the evolution of its performance under these conditions has not been comprehensively studied.

View Article and Find Full Text PDF

It has long been speculated that the mechanical properties of the human oocyte can be an indicator for oocyte viability. Recent studies have demonstrated that embryo implantation rates, following Intra-Cytoplasmic Sperm Injection (ICSI) procedures, may be increased if the shear modulus value of the oocyte Zona Pellucida (ZP) is taken into consideration during embryo transfer. The shear modulus was determined by an iterative oocyte specific finite element (FE) analysis based on the clinical ICSI data.

View Article and Find Full Text PDF

Lubricants are pivotal in mitigating friction and wear between surfaces, ensuring seamless movement of solid objects. However, the predominant use of petroleum-based lubricants in the automotive and industrial ssectors raises substantial concerns for future energy security. The exploration of vegetable oils as an alternative lubricant in the automotive industry was motivated by the depletion of fossil fuels and escalating environmental concerns.

View Article and Find Full Text PDF

Today, there are environmental problems all over the world due to the emission of greenhouse gasses caused by the combustion of diesel fuel. The excessive consumption and drastic reduction of fossil fuels have prompted the leaders of various countries, including Iran, to put the use of alternative and clean energy sources on the agenda. In recent years, the use of biofuels and the addition of nanoparticles to diesel fuel have reduced pollutant emissions, improved the environment, and enhanced the physicochemical properties of the fuel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!