Vector control is one of the main aspects to reach the target of eliminating visceral leishmaniasis from Indian sub-continent as set by the World Health Organisation. Data on different aspects of vector like ecology, behaviour, population dynamics and their association with environmental factors are very important for formulating an effective vector control strategy. The present work was designed to study the species abundance and impact of environmental factors on population dynamics of vector P. argentipes in a visceral leishmaniasis endemic area of Malda district, West Bengal. Adult sand flies were collected using light traps and mouth aspirators from twelve kala-azar affected villages of Habibpur block of Malda district, on a monthly basis from January to December, 2018. Morphological and molecular methods were used for species identification. Population dynamics were assessed by man hour density and per night per trap collection. Data were analysed using SPSS software to determine the impact of environmental factors on vector population P. argentipes was found to the predominant species and prevalent throughout the year. A significantly higher number of sand flies were collected from cattle sheds than human dwellings and peri-domestic vegetation. A portion of the P. argentipes population was exophilic and exophagic as evidenced by their collection from peri-domestic vegetation. The highest population density was recorded during April to September. Population dynamics were mostly influenced by average temperature along humidity and rain fall. Resting behaviour of sand flies was not restricted to the lower portion of the wall but equally distributed throughout the wall and ceiling. Programme officials should consider management of outdoor populations of the sand flies and timings of indoor residual spray for chemical control purpose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actatropica.2020.105358 | DOI Listing |
Oecologia
January 2025
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.
Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months.
View Article and Find Full Text PDFEcology
January 2025
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA.
Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.
View Article and Find Full Text PDFUnlabelled: Antibiotic resistance is a global crisis that stems from the use of antibiotics as an essential part of modern medicine. Understanding how antibiotic resistance is controlled among cells in bacterial populations will provide insights into how antibiotics shape microbial communities. Here, we describe patterns of gene expression that arise from growth on a surface either in isolation or under subinhibitory chloramphenicol exposure.
View Article and Find Full Text PDFSingle-cell RNA-seq analysis characterizes developmental mechanisms of cellular differentiation, lineage determination, and reprogramming with differential conditioning of the microenvironment. In this article, the underlying dynamics are formulated via optimal transport with algorithms that calculate the transition probability of the state of cell dynamics over time. The algorithmic biases of optimal transport (OT) due to entropic regularization are balanced by Sinkhorn divergence, which normally de-biases the regularized transport by centering them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!