Human missions to establish surface habitats on the Moon and Mars are planned in the coming decades. Extraplanetary surface habitat life support systems (LSS) will require new capabilities to withstand anticipated unique, harsh conditions. In order to provide safe, habitable environments for the crew, water purification systems that are robust and reliable must be in place. These water purification systems will be required to treat all sources of water in order to achieve the necessary levels of recovery needed to sustain life over the long-duration missions. Current water recovery and purification systems aboard the International Space Station (ISS) are only partially closed, requiring external inputs and resupply. Furthermore, organic wastes, such as fecal and food wastes, are currently discarded and not recycled. For long-duration missions and habitats, this is not a viable approach. The inability to recycle organic wastes represents a lost opportunity to recover critical elements (e.g., C, H, O, N, P) for subsequent food production, water purification, and atmospheric regeneration. On Earth, a variety of technologies are available to meet terrestrial wastewater treatment needs; however, these systems are rarely completely closed-loop, due to lack of economic drivers, legacy infrastructure, and the (perceived) abundance of resources on Earth. Extraplanetary LSS provides a game-changing opportunity to incentivize the development of completely closed-loop systems. Candidate technologies may be biological, physical, or chemical, with associated advantages and disadvantages. This paper presents a survey of potential technologies, along with their inputs, outputs and requirements, which may be suitable for next-generation regenerative water purification in space. With this information, particular technologies can be down-selected for subsystem integration testing and optimization. In order for future space colonies to have closed-loop systems which minimize consumable inputs and maximize recovery, strategic implementation of a variety of complementary subsystems is needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lssr.2019.10.002DOI Listing

Publication Analysis

Top Keywords

water purification
20
purification systems
12
regenerative water
8
purification space
8
long-duration missions
8
organic wastes
8
completely closed-loop
8
closed-loop systems
8
systems
7
purification
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!