A multi-thermal-lens approach to evaluation of multi-pass probe beam configuration in thermal lens spectrometry.

Anal Chim Acta

Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica, 5000, Slovenia.

Published: March 2020

In this work, a recently proposed thermal lens instrument based on multi-pass probe beam concept is investigated and described as a multi-thermal-lens equivalent system. A simulation of the photothermal lens signal formation in a multi-thermal-lens equivalent configuration of the system is performed and validated by comparing the experimental signals of single, dual and ten-pass configurations to theoretically calculated values. The theoretically predicted enhancement of the signal is 9 to 10-fold for a weak thermal lens when comparing the ten-pass configuration with the conventional single-pass thermal lens system. Experimentally achieved signal enhancement in the ten-pass system is 8.3 for pure ethanol sample and between 8 and 9 for solutions with different concentrations of the Fe(II) - 1,10-Phenanthroline complex. Additionally, a value of 9.1 was calculated as the ratio of the slopes of the calibration lines obtained using the ten-pass and single-pass configurations. The achieved limit of detection for determination of Fe(II), in the ten-pass configuration, was 0.4 μgL, with a relative standard deviation around 4.5%, which compares favorably with previously reported results for TLS determination of Fe(II) in thin samples using low excitation power. For the multi-pass configuration the linear range of measurement is reduced when compared to the single-pass configuration. This is explained by the theoretical analysis of the photothermal signal under multi-pass condition, which shows the important contribution of nonlinear term in theoretical expression for the photothermal signal. The ten-pass configuration, which is presented and validated experimentally for the first time, offers important signal enhancement needed in recently developed TLS instruments with tunable, low power excitation sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2019.12.009DOI Listing

Publication Analysis

Top Keywords

thermal lens
16
ten-pass configuration
12
multi-pass probe
8
probe beam
8
multi-thermal-lens equivalent
8
signal enhancement
8
determination feii
8
photothermal signal
8
configuration
7
signal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!