Redox isomerism, that is, the change of a metal cation valence state in organic complexes, can find promising applications in multistable molecular switches for various molecular electronic devices. However, despite a large number of studies devoted to such processes in organic complexes of multivalent lanthanides, redox-isomeric transformations were never observed for europium. In the present work, we demonstrate the unique case of redox isomerization of Eu(III)/Eu(II) complexes on the example of Eu double-decker octa--butoxyphthalocyaninate () under ambient conditions (air and room temperature). It is shown that assumption of the face-on orientation on the aqueous subphase surface, in which two of each phthalocyanine decks in are located in different media (air and water), leads to the intramolecular electron transfer that results in the formation of a divalent Eu(II) cation in the complex. Lateral compression of the thus-formed monolayer results in the reorientation of bisphthalocyaninate to the edge-on state, in which the ligands can be considered identical, and occurrence of the reverse redox-isomeric transformation into the complex with a trivalent Eu cation. Both redox-isomeric states were directly observed by X-ray absorption near-edge structure spectroscopy in ultrathin films formed under different conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b03403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!