The present study describes the investigation of the binding modes of potential anti-cancerous nitrophenyl derivatives of 2-(x-nitrophenyl)-5-nitrobenzimidazole with calf thymus DNA. The -2-(x-nitrophenyl)-5-nitrobenzimidazoles under investigation differ only in position x of nitro group in nitrophenyl substituent relative to benzimidazole moiety leading to 1-NPNB (x = 2), 2-NPNB (x = 3) and 3-NPNB (x = 4). The DFT calculations predicted that derivatives were electrochemically reducible which was then confirmed by cyclic voltammetry. In cyclic voltammetry, the second reversible peak was dependent on first irreversible reduction. This revealed that electrochemical irreversible process was governed by some other process which was then followed by reversible second electron transfer. Thus, ECE (electron transfer leading to coupled chemical reaction followed by another electron transfer process) mechanism was attributed for electrochemical reduction. Experimental results based on UV-Vis spectroscopy vaguely showed intercalation of 1-NPNB, 2-NPNB and 3-NPNB into DNA which was assisted by cyclic voltammetry. However, thermal melting and florescence spectroscopy unambiguously established intercalation for all three compounds. Molecular docking analysis ascertained in pocket stacking of 5-nitrobenzimidazole moiety in 1-NPNB and 2-NPNB while nitro phenyl substitution in 3-NPNB stacks between DNA base pair during intercalation which was in agreement with DFT computed molecular geometry. Therefore, the relative positions of nitro group and 5-nitrobenzimidazole moieties in 2-(x-nitrophenyl)- 5-nitrobenzimidazole influenced the DNA binding pattern of compounds during intercalation. The cytotoxicity of these compounds was comparable to standard drug doxorubicin against both cancerous (MCF-7) and normal (MCF-10A) breast cells which depicts their anti-cancerous potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2019.106316DOI Listing

Publication Analysis

Top Keywords

cyclic voltammetry
12
electron transfer
12
dna binding
8
nitro group
8
1-npnb 2-npnb
8
dna
5
investigation redox
4
redox mechanism
4
mechanism dna
4
binding novel
4

Similar Publications

Multifunctional Biological Performance of Electrospun PCL Scaffolds Formulated with Silver Sulfide Nanoparticles.

Polymers (Basel)

January 2025

Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico.

Our work describes the green synthesis of silver sulfide nanoparticles (AgS NPs) and their formulation into polycaprolactone fibers (PCL), aiming to improve the multifunctional biological performance of PCL membranes as scaffolds. For this purpose, an extract of rosemary () was employed as a reducing agent for the AgS NPs, obtaining irregular NPs and clusters of 5-60 nm, with a characteristic SPR absorption at 369 nm. AgS was successfully incorporated into PCL fibers by electrospinning using heparin (HEP) as a stabilizer/biocompatibility agent, obtaining nanostructured fibers with a ca.

View Article and Find Full Text PDF

This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways.

View Article and Find Full Text PDF

Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.

View Article and Find Full Text PDF

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

This paper summarizes the main findings of a study which aimed to examine the electrochemical oxidation of homovanillic acid (HVA), the final metabolite of dopamine. A pencil graphite electrode (PGE) was used as working electrode and the measurements were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The type and the composition of the graphite leads used as PGE, the pH of the supporting electrolyte, as well as the scan rates were optimized by CV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!