Ciprofloxacin is a pharmaceutically active compound which belongs to a class of micropollutants that cannot be removed using conventional water treatment systems. In this study, photocatalytic degradation using materials with high surface area and active sites was proposed to remove such contaminants. We demonstrated an easily scalable and simple synthesis route to prepare a 3D porous sulfur-doped g-CN/ZnO hybrid material, and the preparation process parameters were optimized using response surface methodology targeting Ciprofloxacin degradation. The hybrid material removed up to 98% of the bio-toxic Ciprofloxacin from synthetic water. The porous, defect engineered, thermally stable, and chemically interconnected hybrid material presented an 18 and 38% improved degradation efficiency compared to ZnO and sulfur-doped g-CN (or S-CN), respectively. Based on our experimental results, an empirical relation correlating synthesis process parameters and degradation efficiency was developed using face-centered central composite design (FCCD) and response surface methodology (RSM). The current model can be used to design catalytic materials for removing bio-toxic and other micropollutants from water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.109154DOI Listing

Publication Analysis

Top Keywords

hybrid material
12
bio-toxic ciprofloxacin
8
sulfur-doped g-cn/zno
8
process parameters
8
response surface
8
surface methodology
8
degradation efficiency
8
photo-induced degradation
4
degradation bio-toxic
4
ciprofloxacin
4

Similar Publications

Fluorescence In Situ Hybridization Protocol for Visualization of Oomycetes In Vitro and In Planta.

Methods Mol Biol

December 2024

United States Department of Agriculture, Agricultural Research Service, Foreign Disease/Weed Science Research Unit, Frederick, MD, USA.

Fluorescence in situ hybridization enables the visualization of organisms in the environment without having to culture them. Here, we describe a FISH protocol to visualize oomycete structures (mycelia, sporangiophores, sporangia, and oospores) directly as well as from colonized plant material. The protocol utilizes organic compounds with low toxicities and does not require a permeabilization step.

View Article and Find Full Text PDF

Core-Shell Magnetic Particles: Tailored Synthesis and Applications.

Chem Rev

December 2024

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China.

Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g.

View Article and Find Full Text PDF

Purpose: To evaluate the diagnostic yield and safety profile of percutaneous image-guided biopsy of mesenteric lesions.

Materials, Methods, And Procedures: Image-guided percutaneous biopsies of the mesentery at a single institution from 2000 to 2022 were identified and reviewed. Relevant demographic and procedural data were abstracted from the medical record.

View Article and Find Full Text PDF

Unraveling the Growth Dynamics of Rutile SnGeO Using Theory and Experiment.

Nano Lett

December 2024

Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.

Rutile GeO and related materials are attracting interest due to their ultrawide band gaps and potential for ambipolar doping in high-power electronic applications. This study examines the growth of rutile SnGeO films through oxygen-plasma-assisted hybrid molecular beam epitaxy (hMBE). The film composition and thickness are evaluated across a range of growth conditions, with the outcomes rationalized by using density functional theory calculations.

View Article and Find Full Text PDF

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN.

Materials And Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!