Fluorescent polyhydroquinoline (PHQ) derivative was fabricated utilizing one-pot engineered course. The PHQ derivative indicated aggregation induced emission enhancement (AIEE) with arrangement of nanoaggregates of size 11-13 nm in 95% watery DMF medium. The fluorescence emission of PHQ nanoaggregates was extinguished by including TNP and Cr (VI). They indicated prevalent fluorescence quenching towards both TNP and Cr (VI) over other meddling nitro-compounds and metal particles. In light of results got we presumed that both photo-induced fluorescence quenching of PHQ nanoaggregates by TNP, while Inner Filter Effect (IFE) was in charge of fluorescence quenching of PHQ nanoaggregates by Cr (VI). The PHQ nanoaggregates empowered identification of TNP and Cr (VI) down to 0.66 μM (TNP) and 0.28 μM (Cr (VI)). The use of PHQ nanoaggregates were reached out for location of TNP and Cr (VI) in genuine water tests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2020.118087 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
April 2020
Department of Chemistry, Dr. B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India. Electronic address:
Fluorescent polyhydroquinoline (PHQ) derivative was fabricated utilizing one-pot engineered course. The PHQ derivative indicated aggregation induced emission enhancement (AIEE) with arrangement of nanoaggregates of size 11-13 nm in 95% watery DMF medium. The fluorescence emission of PHQ nanoaggregates was extinguished by including TNP and Cr (VI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!