Fluorescent polyhydroquinoline (PHQ) derivative was fabricated utilizing one-pot engineered course. The PHQ derivative indicated aggregation induced emission enhancement (AIEE) with arrangement of nanoaggregates of size 11-13 nm in 95% watery DMF medium. The fluorescence emission of PHQ nanoaggregates was extinguished by including TNP and Cr (VI). They indicated prevalent fluorescence quenching towards both TNP and Cr (VI) over other meddling nitro-compounds and metal particles. In light of results got we presumed that both photo-induced fluorescence quenching of PHQ nanoaggregates by TNP, while Inner Filter Effect (IFE) was in charge of fluorescence quenching of PHQ nanoaggregates by Cr (VI). The PHQ nanoaggregates empowered identification of TNP and Cr (VI) down to 0.66 μM (TNP) and 0.28 μM (Cr (VI)). The use of PHQ nanoaggregates were reached out for location of TNP and Cr (VI) in genuine water tests.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2020.118087DOI Listing

Publication Analysis

Top Keywords

phq nanoaggregates
20
fluorescence quenching
12
phq derivative
8
quenching phq
8
phq
7
nanoaggregates
6
tnp
6
polyhydroquinoline nanoaggregates
4
nanoaggregates dual
4
dual fluorescent
4

Similar Publications

Fluorescent polyhydroquinoline (PHQ) derivative was fabricated utilizing one-pot engineered course. The PHQ derivative indicated aggregation induced emission enhancement (AIEE) with arrangement of nanoaggregates of size 11-13 nm in 95% watery DMF medium. The fluorescence emission of PHQ nanoaggregates was extinguished by including TNP and Cr (VI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!