A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of blue light at 410 and 455 nm on Pseudomonas aeruginosa biofilm. | LitMetric

Effect of blue light at 410 and 455 nm on Pseudomonas aeruginosa biofilm.

J Photochem Photobiol B

Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy. Electronic address:

Published: March 2020

Pseudomonas aeruginosa is an opportunistic pathogen resistant to many antibiotics, able to form biofilm and causes serious nosocomial infections. Among anti-Pseudomonas light-based approaches, the recent antimicrobial Blue Light (aBL) treatment seems very promising. The aim of this study was to evaluate the efficiency of blue light in inhibiting and/or eradicating P. aeruginosa biofilm. Light at 410 nm has been identified as successful in inhibiting biofilm formation not only of the model strain PAO1, but also of CAUTI (catheter-associated urinary tract infection) isolates characterized by their ability to form biofilm. Results of this work on 410 nm light also demonstrated that: i) at the lowest tested radiant exposure (75 J cm) prevents matrix formation; ii) higher radiant exposures (225 and 450 J cm) light impairs the cellular components of biofilm, adherent and planktonic ones; iii) light eradicates with a good rate young and older biofilms in a light dose dependent manner; iv) it is also efficient in inactivating catalase A, a virulence factor playing an important role in pathogenic mechanisms. Light at 455 nm, even if at a lower extent than 410 nm, showed a certain anti-Pseudomonas activity. Furthermore, light at 410 nm caused detrimental effects on enzyme activity of β-galactosidase and catalase A, and changes on plasmid DNA conformation and ortho-nitrophenyl-β-D-galactopyranoside structure. This study supports the potential of blue light for anti-infective and disinfection applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2020.111790DOI Listing

Publication Analysis

Top Keywords

blue light
16
light
10
pseudomonas aeruginosa
8
aeruginosa biofilm
8
form biofilm
8
light 410 nm
8
biofilm
6
blue
4
light 410
4
410 455 nm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!