Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
SRSF1, a member of the SR protein family, is an important splicing factor and regulator of splicing. Multiple splicing isoforms have been reported for this gene. SRSF1-3, a splicing isoform of SRSF1, is necessary for AID-dependent SHM of IgV genes. However, its precise role in SHM remains enigmatic. Transcriptomic analysis of SRSF1-3 reconstituted cells shows upregulation of transcription factor SATB2 and chromatin regulator UBN1. The increased SATB2 and UBN1 are strikingly enriched in the MAR and promoter regions of the IgL gene, respectively. Furthermore, UBN1 enrichment at the promoter region was coupled with a hundred-fold enhanced occupancy of the histone variant H3.3 at the IgL promoter, that is a hallmark of efficient SHM. The enhanced occupancy of SATB2 at the MAR, UBN1 and histone variant H3.3 at the IgL promoter leads to an increase in IgL transcription, revealing a role of SRSF1-3 in SHM. Thus, SRSF1-3 is likely involved in the regulation of SHM, via upregulation of a crucial transcription factor SATB2, as well as, by overexpression of a chromatin modulator of Ig genes, UBN1, which further assists in the recruitment of the histone variant H3.3. Furthermore, the splicing isoform SRSF1-3 regulates alternate splicing pattern of splicing isoforms for various crucial genes. The present study provides the first evidence that a splicing isoform of an SR protein can regulate the post-transcriptional processing of RNA in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2020.01.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!