γ-Glutamyl transpeptidase (GGT) has attracted considerable attention for its regulatory effect on glutathione metabolism in living organisms; further, its close relationship with physiological dysfunctions such as hepatitis and liver cancers has enhanced its applicability. Therefore, the accurate detection of GGT levels is particularly important for the early diagnosis of diseases. Thus, we herein report the development of a surface-enhanced Raman spectroscopic (SERS) probe, namely bis-s,s'-((s)-4,4'-thiolphenylamide-Glu) (b-(s)-TPA-Glu), that comprises of a γ-glutamyl moiety for detection of the GGT activity. In this system, detection was achieved by observing differences in the SERS spectral profiles of the b-(s)-TPA-Glu probe and its corresponding hydrolysis product that resulted from the catalytic action of GGT. This SERS probe system exhibited a high selectivity toward GGT due to a combination of its specific catalytic action and the distinctive spectroscopic fingerprint of the SERS technique. The developed SERS approach was also found to be approximately linear in the range of 0.2-200 U/L, and a limit of detection of 0.09 U/L was determined. Furthermore, the proposed SERS method was suitable for detection of the GGT activity of clinical serum samples and also for evaluation of the inhibitors of GGT. Consequently, this approach is considered to be a promising diagnostic and drug screening tool for GGT-associated diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2019.11.041 | DOI Listing |
Heliyon
January 2025
Department of Chemical Engineering, Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Kingdom of Saudi Arabia.
Detection of biomolecules, Glutathione (GSH) in particular, is important because it helps assess antioxidant capacity, cellular protection, detoxification processes, and potential disease associations. Monitoring glutathione levels can provide valuable information about overall health and well-being. Many medical disorders have been connected to glutathione levels.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.
Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:
Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.
Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).
J Hazard Mater
January 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, PR China. Electronic address:
Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China; Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005 China. Electronic address:
As a zoonotic virus, highly sensitive detection of monkeypox virus is crucial for its prevention and control due to its rapid increase in cases worldwide and the extremely high risk of virus transmission. In this paper, based on the principle of antigen-antibody specific recognition, an ultrasensitive resonance Raman biosensing probe was prepared using a molecule with the bifunctionality of resonance Raman effect and capturing antibody; and with the strong affinity of the biotin-streptavidin (Bio-SA) system, Bio-antibody and SA test strips were prepared. To match the T-line of the test strip, a portable Raman instrument with a strip-shaped spot was designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!