Broadly Neutralizing Antibodies for HIV Prevention.

Annu Rev Med

HIV Vaccine Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; email:

Published: January 2020

In the last decade, over a dozen potent broadly neutralizing antibodies (bnAbs) to several HIV envelope protein epitopes have been identified, and their in vitro neutralization profiles have been defined. Many have demonstrated prevention efficacy in preclinical trials and favorable safety and pharmacokinetic profiles in early human clinical trials. The first human prevention efficacy trials using 10 sequential, every-two-month administrations of a single anti-HIV bnAb are anticipated to conclude in 2020. Combinations of complementary bnAbs and multi-specific bnAbs exhibit improved breadth and potency over most individual antibodies and are entering advanced clinical development. Genetic engineering of the Fc regions has markedly improved bnAb half-life, increased mucosal tissue concentrations of antibodies (especially in the genital tract), and enhanced immunomodulatory and Fc effector functionality, all of which improve antibodies' preventative and therapeutic potential. Human-derived monoclonal antibodies are likely to enter the realm of primary care prevention and therapy for viral infections in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-med-110118-045506DOI Listing

Publication Analysis

Top Keywords

broadly neutralizing
8
neutralizing antibodies
8
prevention efficacy
8
antibodies
5
antibodies hiv
4
prevention
4
hiv prevention
4
prevention decade
4
decade dozen
4
dozen potent
4

Similar Publications

Structural Immunology of SARS-CoV-2.

Immunol Rev

December 2024

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.

The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants.

View Article and Find Full Text PDF

Preventing immune escape of SARS-CoV-2 variants is crucial in vaccine development to ensure broad protection against the virus. Conformational epitopes beyond the RBD region are vital components of the spike protein but have received limited attention in the development of broadly protective SARS-CoV-2 vaccines. In this study, we used a DNA prime-protein boost regimen to evaluate the broad cross-neutralization potential of immune response targeting conformational non-RBD region against SARS-CoV-2 viruses in mice.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity.

View Article and Find Full Text PDF

Design and evaluation of a multi-epitope HIV-1 vaccine based on human parvovirus virus-like particles.

Vaccine

December 2024

Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico. Electronic address:

The development of a protective HIV vaccine remains a challenge given the high antigenic diversity and mutational rate of the virus, which leads to viral escape and establishment of reservoirs in the host. Modern antigen design can guide immune responses towards conserved sites, consensus sequences or normally subdominant epitopes, thus enabling the development of broadly neutralizing antibodies and polyfunctional lymphocyte responses. Conventional epitope vaccines can often be impaired by low immunogenicity, a limitation that may be overcome by using a carrier system.

View Article and Find Full Text PDF

Decoding broadly neutralizing antibodies: a milestone in SFTSV therapy.

EBioMedicine

December 2024

State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!